B.Sc. III BIOTECHNOLOGY

PAPER-I

PLANT, ENVIRONMENTAL AND INDUSTRIAL BIOTECHNOLOGY

MM-50

UNIT-I

- 1. Introduction to Plant cell and Tissue culture: History, Scope and Application.
- 2. Tissue culture Media and Cellular Differentiation.
- 3. Protoplast Isolation and Fusion, Organogenesis, Embryogenesis, Anther and Ovary culture.

UNIT-II

1. Agrobacterium Mediated Transformation, Ti and Ri Plasmid.

- 2. Bt Gene and Bt Cotton, Edible vaccines and Genetically modified plants- Golden Rice, Herbicide Resistance, Drought Resistance.
- 3. Germplasm storage and Cryopreservation.

UNIT-III

1. General Introduction and Scope of Environmental Biotechnology.

2. Environmental Pollution and its type.

- 3. Solid Waste Management: Principle of management, Types of Sources, Effect of Solid waste, Concept of composting and Vermi composting.
- 4. Wastewater Treatment: Physical, Chemical, and Biological.

UNIT-IV

1. Biofertilizer and Biopesticides- Cyanobacteria, Bacteria, Fungi; Significance and Practices.

2. Bioremediation of Xenobiotics compounds.

3. Types of IPR-Patents, Copyright, Trademark, G.I., Patenting Genes and Life form.

UNIT-V

1. Types of Bioreactor: Design of Stirred tank, Fluidized bed.

2. Fermentation: Lactic acid and Alcohol.

- 3. Industrially important Microorganisms: Isolation, Preservation (Slant, Mineral Oil and Lyophilize) and its application.
- 4. Food Technology: Food spoilage. Canning, Packing and Food Preservation.

BoS approved syllabus for B.Sc. Biotechnology (Academic session 2018-19, 2019-20 and 2020-21)

B.Sc. III BIOTECHNOLOGY

PAPER-II

IMMUNOLOGY, ANIMAL AND MEDICAL BIOTECHNOLOGY

MM-50

UNIT-I

- 1. Concept of Immunity: Innate and Acquired, Humoral and Cell mediated Response.
- 2. Cells and Organs involved in Immune system-Structure and Function.
- 3. Antigen, Antibody: Types, Structure and Functions.

UNIT-II

- 1. Cytokines
- 2. Autoimmune diseases- Hemolytic Anemia, Rheumatoid arthritis, Insulin dependent diabetes.
- 3. Immuno deficiencies. Diseases-SCID, AIDS.

UNIT-III

- 1. Antigen-Antibody Interaction: Agglutination, Precipitation, RIA, ELISA, Immuno Electrophoresis and Immunofluorescence.
- 2. Immunity of Infectious Diseases: Protozoa (Malaria, Kalaazar), Bacteria (T.B., Typhoid) and Virus (Influenza, Pox).
- 3. Fundamental of Epidemic Diseases: Swine flu and Dengue.

UNIT-IV

- 1. Animal Cell Culture and Growth Media.
- 2. Primary, Secondary culture and Established Cell line Culture.
- 3. Tissue engineering: Basic Concept, Transgenic animal: Mice and Sheep.

UNIT-V

- 1. Hypersensitivity, Interferon and Monoclonal antibody.
- 2. Organ Transplantation, Biology of Cancer.
- 3. In vitro fertilization and Embryo Transfer.

ì

List of Books-

- 1. A test Book of Biotechnology: Indu Shekher Thakur, 2nd edition. I.K. International Pvt. Ltd., New Delhi.
- 2. Biotechnology (Fundamentals and Applications): S.S. Purohit Agrobios (India), Jodhpur.
- 3. Fundamentals of Microbiology and Immunology: Ajit Kr. Banerjee, Nirmalya Banerjee -New central Book Agency (P) Ltd., Kolkata.
- 4. Plant Biotechnology: H.Si Chawla Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.
- 5. Plant Biotechnology: B.D. Singh Kalyani Publication, New Delhi.
- 6. Biotechnology: Fundamental & Application (2005) S.S. Purohit
- 7. Immunology: J. Kubey et al. 7th edition.
- 8. Immunology: Roitt et al.
- 9. Fundamental of Immunology: W. Paul.
- 10. Plant Tissue culture: K.K.De.
- 11. Plant Tissue Culture (Practical): H.S. Chawla.
- 12. Biochemistry & Molecular Biology of Plant: Buchanan, Gruissemen & Jones 2nd edition.
- 13. Tools and Techniques in Biotechnology (2011) M. Debnath

ì

List of Practical's

PLANT, ENVIRONMENTAL, INDUSTRIAL AND MEDICAL BIOTECHNOLOGY

- 1. Preparation of Tissue culture media.
- 2. Sterilization of plant material.
- 3. Seed Germination, Root, Shoot and Callus Culture.
- 4. Determination of total dissolved solids of water.
- 5. Determination of DO, BOD, COD of water.
- 6. Determination of Coliform by MPN Test.
- 7. Production of Enzymes/Antibiotics/Acids.
- 8. Effect of Biopesticides on microorganism
- 9. Antigen Antibody interaction- Determination of Blood Group and Rh factor.
- 10. Widal Test
- 11. VDRL Test.
- 12. ELISA Test.
- 13. Perform of Immuno-diffusion

ì

BoS approved syllabus for B.Sc. Biotechnology (Academic session 2018-19, 2019-20 and 2020-21)

SCHEME FOR PRACTICAL EXAMINATION

Time: 4 hrs.

1. Experiment based on Paper - I

(i) Plant tissue culture

(ii) Environment / Industrial

2. Experiment based on Paper - II

3. Spots

4. Viva-voce

5. Sessional/ Record

MM-50

08 marks

07marks

15 marks

10marks

ì

ì

REFERENCE BOOKS

- 1. Physical chemistry, G.M.Barrow. International Student Edition McGraw Hill.
- 2. University General Chemistry, CNR Rao, Macmillan.
- 3. Physical Chemistry R.A.Alberty, Wiley Eastrn.
- 4. The elements of Physical Chemistry P.W.Alkin,Oxford.
- 5. Physical Chemistry through problems, S.K.Dogra, Wiley Eastern.
- 6. Physical Chemistry B.D.Khosla.
- 7. Physical Chemistry, Puri & Sharma.
- 8. Bhoutic Rasayan, Puri & Sharma.
- 9. Bhoutic Rasayan, P.L.Soni.
- 10. Bhoutic Rasayan, Bahl & Tuli.
- 11. Physical Chemistry, R.L.Kapoor, Vol- I-IV.
- 12. Introduction to quantum chemistry, A.K. Chandra, Tata McGraw Hill.
- 13. Quantum Chemistry, Ira N. Levine, Prentice Hall.

B.SC.-III (BOTANY) PAPER –I

(ANALYTICAL TECHNOLOGY PLANT PATHOLOGY, EXPERIMENTAL EMBRYOLOGY, ELEMENTARY BIOSTATISTICS, ENVIRONMENTAL POLLUTION AND CONSERVATION)

UNIT-I

Structure, Principle and applications of analytical instrumentation.

Chromatography technique, Oven, Incubator, Autoclave, Centrifuge, Spectrophotometere

UNIT-II

Plant Tissue culture techniques, growth media, totipotency, protoplast culture, somatic hybrids and cybrids, micropropagation, somaclonal variations, haploid culture.

Analytical techniques: Microscopy-Light microscope, Electron microscope

UNIT-III

General principles of plant pathology, general symptoms of fungal, bacterial and viral diseases, mode of infection, diseases resistance and control measures, plant quarantine. A study of epidemiology and etiology of following plant diseases.

Rust diseases of wheat, Tikka diseases of groung nut, Red rot of sugar can, Bacterial blight of rice, Yellow vein mosaic of b hindi, Little leaf of brinjal.

UNIT-IV

Introduction to pollution, green house gases, Ozone depletion, Dissolve oxygen, B.O.D., C.O.D.

Bio magnification, Eutrophication, Acid precipitation, Phytoremediation, Plant indicators,. Biogeographical Zones of India, Concept of biodiversity, CBD, MAB, National parks and biodiversity Hot spots, Conservation strategies, Red Data Book, IUCN threat categories, invasive species, endemic species, concept of sustainable development.

UNIT-V

ELEMENTARY BIOSTATISTICS:

Introduction and application of Biostatics, measure of central tendency-Mean, Median, Mode, measures of dispersal-Standard deviation, standard error.

Books Recommended:

Singh, RS, Plant Diseases, Oxford & IBH, New Delhi.

Pandey, BP, Plant Pathology, S.Chand Publishing, New Delhi

Sharma, PD, Microbiology and Plant pathology, Rastogi Publications, Meerut

Sharma PD, Mycology and Phytopathology, Rastogi Publications, Meerut

Singh JS, Singh SP and Gupta, SR, *Ecology Environmental Science and Conservation*, S. Chand Publishing, New Delhi

Sharma, PD. *Ecology and Environment*, Rastogi Publications, Meerut

Bhojwani, SS and Razdan, MK, Plant Tissue Culture: Theory and Practices, Elsevier

Sharma AK, Text book of Biostatistics, Discovery Publishing House Pvt. Ltd.

(Dr. J.N. Verma) Rekha Pimpalgaonkar)

Dr.Ranjana Shristava)

Proff. & Head Proff. & Head Proff. & Head

Govt. D.B. Girls PG College Govt. N PG Science College Govt. VYTPG Science College

(Dr.

Raipur, (C.G.) Raipur, (C.G.)

(Mrs. Sanchal Moghe) (Mr. Shivakant Mishra) (Mr Sudheer Tiwari)

Govt. Bilasa Girls College, Bilaspur

B.Sc.-III (BOTANY) PAPER –II

(GENETICS, MOLECULAR BIOLOGY, BIOTECHNOLOGY AND BIOCHEMISTRY)

UNIT-I

Cell and cell organelles, organization and morphology of chromosomes, giant chromosomes, cell division, Mendel's laws, gene interactions, linkage and crossing over, chromosomal aberration, polyploidy, sex linked inheritance, sex determination, cytoplasmic inheritance, gene concept: cistron, muton, recon.

UNIT-II

Nucleic acids, structure and forms of DNA and RNA, DNA/RNA as genetic material, replication of DNA, biochemical and molecular basis of mutation, genetic code and its properties, mechanism of transcription and translation in prokaryotes, regulation of gene expression, Operon model.

UNIT-III

Recombinant DNA, Enzymes in recombinant DNA technology, cloning vectors (Plasmid, Bacteriophages, Cosmids, Phagemids), gene cloning, PCR, Application of Biotechnology; G.M.Plants, Monoclonal antibodies, DNA finger printing

UNIT-IV

Protein: Chemical composition, primary, secondary and tertiary structure of Proteins.

Carbohydrate: general account of monosaccharides, disaccharids and Polysaccharides

Fat: Structure and properties of fats and fatty acids, synthesis and breakdown.

UNIT-V

ENZYMES: Nomenclature and classifaction, components of enzyme, theories of enzyme action, enzyme kinetics (Michaelis-Menten constant), allosteric enzymes, isozymes, Abzymes. Ribozymes, factors affecting enzyme activity.

Books Recommended:

Nelson, DL, Cox, MM, Lehninger *Principles of Biochemistry*, W.H. freeman and Company, New York, USA.

Cooper, GM, *The Cell: A Molecular Approach*, ASM Press & Sunderland, Washington, D.C. Sinauer Associates, MA.

Singh BD, Fundamental of Genetics, Kalyani Publication

- Singh BD, *Genetics*, Kalyani Publication
- Gupta, PK, Cell and Molecular Biology, Rastogi Publications, Meerut
- Singh, BD, Biotechnology: Expanding Horizons, Kalyani publications
- Gupta, PK, *Elements of Plant Biotechnology*, Rastogi Publications, Meerut
- Gupta, SN, Concepts of Biochemistry, Rastogi Publications, Meeru
- Jain, JL., Jain S, Jain, N, Fundamentals of Biochemistry, S Chand Publishing, New Delhi

B.Sc.-III (Botany)

Practical

- 1. Study of host parasite relationship pf plant diseases listed above.
- 2. Demonstration of preparation of Czapek's Dox medium and Potato dextrose agar medium, sterilization of culture medium and pouring.
- 3. Inoculation in culture tubes and petriplates.
- 4. Gram Staining.
- 5. Microscopic examination of Curd.
- 6. Study of plant diseases as listed in the theory paper.
- 7. Biochemical test of carbohydrate and protein.
- 8. Instrumentation techniques

PRACTICAL SCHEME

TIME	E: 4 Hrs.	M.M.: 50
1.	Plant Disease/Symptoms	10
2.	Instrumentation techniques	05
3.	Staining of Microbes	05
4.	Tissue Culture techniques	05
5.	Spotting	10
6.	Project Work/ Field Study	05
5.	Viva-Voce	05
6.	Sessional	05

W.Co

(Dr. J.N. Verma) Dr.Ranjana Shristava) Mayer Co

(Dr. Rekha Pimpalgaonkar)

Proff. & Head

Proff. & Head

Proff. & Head

Govt. D.B. Girls PG College

Govt. N PG Science College

Govt. VYTPG Science College

Raipur, (C.G.)

Raipur, (C.G.)

Raipur, (C.G.)

(Mrs. Sanchal Moghe)

(Mr. Shivakant Mishra)

(Mr Sudheer Tiwari)

Govt. Bilasa Girls College, Bilaspur

MATHEMATICS

There shall be three theory papers. Two compulsory and one optional. Each paper carrying 50 marks is divided into five units and each unit carry equal marks.

B.Sc. Part-III PAPER - I ANALYSIS

REAL ANALYSIS

UNIT-I Series of arbitrary terms. Convergence, divergence and oscillation. Abel's and Dirichlet's test. Multiplication of series. Double series. Partial derivation and differentiability of real-valued functions of two variables. Schwarz and Young's theorem. Implicit function theorem. Fourier series. Fourier expansion of piecewise monotonic functions.

UNIT-II Riemann integral. Intergrability of continuous and monotonic functions. The fundamental theorem of integral calculus. Mean value theorems of integral calculus. Improper integrals and their convergence.
 Comparison tests. Abel's and Dirichlet' tests. Frullani's integral. Integral as a function of a parameter.
 Continuity, derivability and integrability of an integral of a function of a parameter.

COMPLEX ANALYSIS

UNIT-III Complex numbers as ordered pairs. Geometrical representation of complex numbers. Stereographic projection. Continuity and differentiability of complex functions. Analytic functions. Cauchy-Riemann equations. Harmonic functions. Elementary functions. Mapping by elementary functions. Mobius transformations. Fixed points, Cross ratio. Inverse points and critical mappings. Conformal mappings.

METRIC SPACES

UNIT-IV Definition and examples of metric spaces. Neighbourhoods, Limit points, Interior points, Open and Closed sets, Closure and interior. Boundary points, Sub-space of a metric space. Cauchy sequences, Completeness, Cantor's intersection theorem. Contraction principle, construction of real numbers as the completion of the incomplete metric space of rationals. Real numbers as a complete ordered field.

UNIT-V Dense subsets. Baire Category theorem. Separable, second countable and first countable spaces. Continuous functions. Extension theorem. Uniform continuity, isometry and homeomorphism. Equivalent metrics. Compactness, sequential compactness. Totally bounded spaces. Finite intersection property. Continuous functions and Compact sets, Connectedness, Components, Continuous functions and Connected sets.

- 1. T.M. Apostol, Mathematical Analysis, Narosa Publishing House, New Delhi, 1985.
- 2. R.R. Goldberg, Real Analysis, Oxford & IBH publishing Co., New Delhi, 1970.
- 3. S. Lang, Undergraduate Analysis, Springer-Verlag, New York, 1983.
- 4. D. Somasundaram and B. Choudhary, A First Coarse in Mathematical Analysis, Narosa Publishing House, New Delhi, 1997.
- 5. Shanti Narayan, A Course of Mathematical Analysis, S. Chand & Co. New Delhi.
- 6. P.K. Jain and S.K. Kaushik, An introduction to Real Analysis, S. Chand & Co., New Delhi, 2000.
- 7. R.V. Churchill and J.W. Brown, Complex Variables and Applications, 5th Edition, McGraw-Hill, NewYork, 1990.
- 8. Mark J. Ablowitz and A.S. Fokas, Complex Variables: Introduction and Applications, Cambridge University Press, South Asian Edition, 1998.
- 9. Shanti Narayan, Theory of Functions of a Complex Variable, S. Chand & Co., New Delhi.
- 10. E.T. Copson, Metric Spaces, Cambridge University Press, 1968.
- 11. P.K. Jain and K. Ahmad, Metric Spaces, Narosa Publishing House, New Delhi, 1996.
- 12. G.F. Simmons, Introduction to Topology and Modern Analysis, McGraw-Hill, 1963.

B.Sc. Part-III PART - II ABSTRACT ALGEBRA

- **UNIT-I** Group-Automorphisms, inner automorphism. Automorphism of groups and their computations, Conjugacy relation, Normaliser, Counting principle and the class equation of a finite group. Center for Group of prime-order, Abelianizing of a group and its universal property. Sylow's theorems, Sylow subgroup, Structure theorem for finite Abelian groups.
- **UNIT-II** Ring theory-Ring homomorphism. Ideals and quotient rings. Field of quotients of an integral domain, Euclidean rings, polynomial rings, Polynomials over the rational field. The Eisenstien criterion, polynomial rings over commutative rings, Unique factorization domain. R unique factorisation domain implies so is $R[x_1, x_2, ..., x_n]$. Modules, Submodules, Quotient modules, Homomorphism and Isomorphism theorems.
- UNIT-III Definition and examples of vector spaces. Subspaces. Sum and direct sum of subspaces. Linear span, Linear dependence, independence and their basic properties. Basis. Finite dimensional vector spaces. Existence theorem for bases. Invariance of the number of elements of a basis set. Dimension. Existence of complementary subspace of a finite dimensional vector space. Dimension of sums of subspaces. Quotient space and its dimension.
- **UNIT-IV** Linear transformations and their representation as matrices. The Algebra of linear transformations. The rank nullity theorem. Change of basis. Dual space. Bidual space and natural isomorphism. Adjoint of a linear transformation. Eigenvalues and eigenvectors of a linear transformation. Diagonalisation. Annihilator of a subspace. Bilinear, Quadratic and Hermitian forms.
- UNIT-V Inner Product Spaces-Cauchy-Schwarz inequality. Orthogonal vectors. Orthogonal Complements. Orthonormal sets and bases. Bessel's inequality for finite dimensional spaces. Gram-Schmidt Orthogonalization process.

- 1. I.N. Herstein, Topics in Algebra, Wiley Eastern Ltd., New Delhi, 1975.
- 2. N. Jacobson, Basic Algebra, Vols. I & II. W.H. Freeman, 1980 (also published by Hindustan Publishing Company).
- 3. Shanti Narayan, A Text Book of Modern Abstract Algebra, S.Chand & Co. New Delhi.
- 4. K.B. Datta, Matrix and Linear Algebra, Prentice Hall of India Pvt. Ltd., New Delhi, 2000.
- 5. P.B. Bhattacharya, S.K. Jain and S.R. Nagpal, Basic Abstract Algebra (2"" Edition) Cambridge University Press, Indian Edition, 1997.
- K. Hoffman and R. Kunze, Linear Algebra, (2nd Edition), Prentice Hall. Englewood Cliffs, New Jersey, 1971
- 7. S.K. Jain, A. Gunawardena and P.B. Bhattacharya, Basic Linear Algebra with MATLAB. Key College Publishing (Springer-Verlag) 2001.
- 8. S. Kumaresan, Linear Algebra, A Geometric Approach, Prentice-Hall of India, 2000.
- 9. Vivek Sahai and Vikas Bist, Algebra, Norosa Publishing House, 1997.
- 10. I.S. Luther and I.B.S.Passi, Algebra, Vol. I-Groups, Vol. II-Rings. Narosa Publishing House (Vol. I-1996, Vol. II-1999)
- 11. D.S. Malik, J.N. Mordeson, and M.K. Sen, Fundamentals of Abstract Algebra, McGraw-Hill International Edition, 1997.

B.Sc. Part-III PAPER - III - (OPTIONAL) (I) PRINCIPLES OF COMPUTER SCIENCE

- UNIT-I Data Storage Storage of bits. Main Memory. Mass Storage. Coding Information of Storage. The Binary System. Storing integers, storing fractions, communication errors.
 Data Manipulation The Central Processing Unit. The Stored-Program Concept. Programme Execution. Other Architectures. Arithmetic/Logic Instructions. Computer- Peripheral Communication.
- **UNIT-II Operating System and Networks -** The Evolution of Operating System. Operating System Architecture. Coordinating the Machine's Activities. Handling Competition Among Process. Networks. Networks Protocol.

Software Engineering - The Software Engineering Discipline. The Software Life Cycle. Modularity. Development Tools and Techniques. Documentation. Software Ownership and Liability.

- UNIT-III Algorithms The Concept of an Algorithm, Algorithm Representation. Algorithm Discovery. Iterative Structures. Recursive Structures. Efficiency and Correctness. (Algorithms to be implemented in C++).
 Programming Languages Historical Perspective. Traditional Programming Concepts, Program Units. Language Implementation. Parallel Computing. Declarative Computing.
- **UNIT-IV Data Structures -** Arrays. Lists. Stacks. Queues. Trees. Customised Data Types. Object Oriented Programming.

File Structure - Sequential Files. Text Files. Indexed Files. Hashed Files. The Role of the Operating System.

Database Structure - General Issues. The Layered Approach to Database Implementation. The Relational Model. Object-Oriented Database. Maintaining Database Integrity. E-R models

UNIT-V Artifical Intelligence - Some Philosophical Issues. Image Analysis. Reasoning, Control System Activities. Using Heuristics. Artificial Neural Networks. Application of Artificial Intelligence.
 Theory of Computation - Turning Machines. Computable functions. A Non computable Function. Complexity and its Measures. Problem Classification.

- 1. J. Glen Brookshear, Computer Science: An Overview, Addition Wesley.
- 2. Stanley B. Lippman, Josee Lojoie, C++ Primer (3rd Edition), Addison-Wesley.

B.Sc. Part-III PAPER - III - (OPTIONAL) (II) DISCRETE MATHEMATICS

- UNIT-I Sets and Propositions Cardinality. Mathematical Induction, Principle of inclusion and exclusion.
 Computability and Formal Languages Ordered Sets. Languages. Phrase Structure Grammars.
 Types of Grammars and Languages. Permutations. Combinations and Discrete Probability.
- **UNIT-II Relations and Functions -** Binary Relations, Equivalence Relations and Partitions. Partial Order Relations and Lattices. Chains and Antichains. Pigeon Hole Principle.
 - **Graphs and Planar Graphs -** Basic Terminology. Multigraphs. Weighted Graphs. Paths and Circuits. Shortest Paths. Eulerian Paths and Circuits. Travelling Salesman Problem. Planner Graphs. Trees.
- UNIT-III Finite State Machines Equivalent Machines. Finite State Machines as Language Recognizers.
 Analysis of Algorithms Time Complexity. Complexity of Problems. Discrete Numeric Functions and Generating Functions.
- UNIT-IV Recurrence Relations and Recursive Algorithms Linear Recurrence Relations with constant coefficients. Homogeneous Solutions. Particular Solution. Total Solution. Solution by the Method of Generating Functions. Brief review of Groups and Rings.
- UNIT-V Boolean Algebras Lattices and Algebraic Structures. Duality, Distributive and Complemented Lattices. Boolean Lattices and Boolean Algebras. Boolean Functions and Expressions. Prepositional Calculus. Design and Implementation of Digital Networks. Switching Circuits.

REFERENCES:

 C.L. Liu, Elements of Discrete Mathematics, (Second Edition), McGraw Hill, International Edition, Computer Science Series, 1986

B.Sc. Part-III PAPER - III - (OPTIONAL) (III) PROGRAMMING IN C AND NUMERICAL ANALYSIS

(Theory & Practical)

Theory component will have maximum marks 30. Practical component will have maximum marks 20.

UNIT-I Programmer's model of a computer. Algorithms. Flow Charts. Data Types. Arithmetic and input/output instructions. Decisions control structures. Decision statements. Logical and Conditional operators. Loop. Case control structures. Functions. Recursions. Preprocessors. Arrays. Puppetting of strings. Structures. Pointers. File formatting.

Numerical Analysis

- UNIT-II Solution of Equations: Bisection, Secant, Regula Falsi, Newton's Method, Roots of Polynomials.
 Interpolation: Lagrange and Hermite Interpolation, Divided Differences, Difference Schemes, Interpolation Formulas using Differences. Numerical Differentiation. Numerical Quadrature: Newton-Cote's Formulas. Gauss Quadrature Formulas, Chebychev's Formulas.
- **UNIT-III Linear Equations:** Direct Methods for Solving Systems of Linear Equations (Guass Elimination, LU Decomposition, Cholesky Decomposition), Iterative Methods (Jacobi, GaussSeidel, Relaxation Methods).

The Algebraic Eigenvalue problem: Jacobi's Method, Givens' Method, Householder's Method, Power Method, QR Method, Lanczos' Method.

UNIT-IV Ordinary Differential Equations: Euler Method, Single-step Methods, Runge-Kutta's Method, Multistep Methods, Milne-Simpson Method, Methods Based on Numerical Integration, Methods Based on Numerical Differentiation, Boundary Value Problems, Eigenvalue Problems.

Approximation: Different Types of Approximation, Least Square Polynomial Approximation, Polynomial Approximation using Orthogonal Polynomials, Approximation with Trigonometric Functions, Exponential Functions, Chebychev Polynomials, Rational Functions.

Monte Carlo Methods

Unit-V Random number generation, congruential generators, statistical tests of pseudo-random numbers.
 Random variate generation, inverse transform method, composition method, acceptance rejection method, generation of exponential, normal variates, binomial and Poisson variates.
 Monte Carlo integration, hit or miss Monte Carlo integration, Monte Carlo integration for improper

Monte Carlo integration, hit or miss Monte Carlo integration, Monte Carlo integration for imprope integrals, error analysis for Monte Carlo integration.

- 1. Henry Mullish and Herbert L. Cooper, Spirit of C: An Introduction to Modern Programming, Jaico Publishers, Bombay.
- 2. B.W. Kernighan and D.M. Ritchie. The C Programming Language 2nd Edition, (ANSI features) Prentice Hall, 1989.
- 3. Peter A Darnel and Philip E. Margolis, C: A Software Engineering Approach, Narosa Publishing House, 1993.
- 4. Robert C. Hutehisonand Steven B. Just, Programming using C Language, McGraw Hill, 1988.
- 5. Les Hancock and Morris Krieger, The C Primer, McGraw Hill, 1988.
- 6. V. Rajaraman, Programming in C, Prentice Hall of India, 1994.
- 7. Byron S. Gottfried, Theory and Problems of Programming with C, Tata McGraw-Hill Publishing Co. Ltd., 1998.
- 8. C.E. Froberg, Introduction to Numerical Analysis, (Second Edition), Addison-Wesley, 1979.
- 9. James B. Scarborough, Numerical Mathematical Analysis, Oxford and IBHPublishing Co. Pvt. Ltd. 1966.

- Melvin J. Maron, Numerical Analysis A Practical Approach, Macmillan publishing Co., Inc. New York, 1982
- 11. M.K. Jain, S.R.K. lyengar, R.K. Jain, Numerical Methods Problems and Solutions, New Age International (P) Ltd., 1996.
- 12. M.K. Jain, S.R.K. lyengar, R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International (P) Ltd., 1999.
- 13. R.Y. Rubistein, Simulation and the Monte Carlo Methods, John Wiley, 1981.
- 14. D.J. Yakowitz, Computational Probability and Simulation, Addison-Wesley, 1977.

PAPER - III - (OPTIONAL) (IV) PRACTICAL PROGRAMMING IN C AND NUMERICAL ANALYSIS

LIST OF PRACTICAL TO BE CONDUCTED...

- 1. Write a program in C to find out the largest number of three integer numbers.
- 2. Write a program in C to accept monthly salary from the user, find and display income tax with the help of following rules:

Monthly Salary

9000 or more

7500 or more

7499 or less

Income Tax

40% of monthly salary

30% of monthly salary

20% of monthly salary

- 3. Write a program in C that reads a year and determine whether it is a leap year or not.
- 4. Write a program in C to calculate and print the first n terms of fibonacci series using looping statement.
- 5. Write a program in C that reads in a number and single digit. It determines whether the first number contains the digit or not.
- 6. Write a program in C to computes the roots of a quadratic equation using case statement.
- 7. Write a program in C to find out the largest number of four numbers using function.
- 8. Write a program in C to find the sum of all the digits of a given number using recursion.
- 9. Write a program in C to calculate the factorial of a given number using recursion.
- 10. Write a program in C to calculate and print the multiplication of given 2D matrices.
- 11. Write a program in C to check that whether given string palindrome or not.
- 12. Write a Program in C to calculate the sum of series:

$$1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots + \frac{1}{n!}x^n$$

- 13. Write a program in C to determine the grade of all students in the class using Structure. Where structure having following members name, age, roll, sub1, sub2, sub3, sub4 and total.
- 14. Write a program in C to copy one string to another using pointer. (Without using standard library functions).
- 15. Write a program in C to store the data of five students permanently in a data file using file handling.

B. Sc. Part III

ELECTRONICS

Paper I

ELB 301: Industrial Electronics

Theory: Max. Marks :50

Unit-1

Thyristors: Principles and operations of SCR, Voltage amplifier gate characteristics of SCR, Characteristics of two transistor models, Thyristor construction, Rectifier circuit using SCR, GTO, Operation and characteristics of DIAC, TRIAC, Silicon Controlled Switch, Silicon Unilateral Switch, Silicon Bilateral Switch, and Light activated SCR. Turn ON/OFF Mechanism: Basics of turn on and turn off methods

Unit-2

Applications of SCR: Multiple connections of SCR, Series operation, Triggering of series connected SCR, Parallel operation, Triggering of parallel connected SCR, SCR di/dt calculation, Snubber circuit, dv/dt calculation across SCR, Types of converters, Full wave controlled rectifier with resistive load, FWCR with inductive load, FWCR with free wheeling diode.

Unit-3

Inverters: Types of inverters, Single phase bridge inverter, Mc Murray impulse communication inverter, Single phase half bridge voltage source inverter, Single phase full bridge voltage inverter, Step down choppers, Step up choppers, Chopper classification.

Other Applications: Induction heating, Resistance welding, Over voltage protection, Zero voltage switch, SMPS,UPS, DC circuit breaker, Battery charger, AC static switch, DC static switch, Time delay, Fan regulator using TRIAC.

Unit-4

PCB Fundamentals: PCB Advantages, components of PCB, Electronic components, IC's, Surface Mount Devices (SMD). Classification of PCB - single, double, multilayer and flexible boards, Manufacturing of PCB, PCB standards.

Schematic & Layout Design: Schematic diagram, General, Mechanical and Electrical design considerations, Placing and Mounting of components, Conductor spacing, routing guidelines, heat sinks and package density, Net list, creating components for library, Tracks, Pads, Vias, power plane,

grounding, Lead cutting and Soldering Techniques, Testing and quality controls.PCB Technology Trends, Environmental concerns in PCB industry.

Unit-5

Analog/Digital Multimeter: Analog multimeter, AC and DC measurment, conversion of analog output to digital form (A/D), Dual ramp A/D converter, digital measuring system, multimeter block diagram, voltage, current and resistance measurments. Frequency counter: Elements of electronic counter, decade counting assembly temperature compensated prystal oscillator, universal counter, measurement modes; frequency measurement, period measurement, time interval measurement, measurement errors: gating errors, time base error, trigger level error.

Suggested Books:

- 1. Ramamourthy "Thyristor and their applications" East-West Publishers, 2nd Edition
- 2. Shamir K Datta "Power Electronics and Controllers" PHI, 3rd Edition
- 3. Power Electronics: Devices, Circuits and Industrial Applications
- 4. V.R. MoorthyOxford University Press; First Edition edition
- Printed circuit Board Design & Technology by Walter C. Bosshart, Tata McGraw Hill.
- 6. Printed Circuit Board –Design, Fabrication, Assembly & Testing by R.S.Khandpur, TATA McGraw Hill Publisher
- 7. Electronics Instrumentation H.S.Kalsi McGraw Hill Education; 3 edition (1 July 2017)
- Modern Electronic Instrumentation and Measurement Techniques Albert Helfrick and William D Cooper Prentice Hall India Learning Private Limited
- 9. Electronic Instrumentation and Measurements <u>David A. Bell</u> Oxford University Press India; Third edition (12 April 2013)

Paper II

ELB 302 :Mobile Application Programming and Introduction to VHDL Theory: Max. Marks: 50

Unit-1

Introduction: What is mobile Application Programming, Different Platforms, Architecture and working of Android, iOS and Windows phone 8 operating system, Comparison of Android, iOS and Windows phone 8

Android Development Environment: What is Android, Advantages and Future of Android, Tools and about Android SDK, Installing Java, Eclipse, and Android, Android Software Development Kit for Eclipse, Android Development Tool: Android Tools for Eclipse, AVDs: Smartphone Emulators, Image Editing,

Unit-2

Android Software Development Platform: Understanding Java SE and the Dalvik Virtual Machine, Directory Structure of an Android Project, Common Default Resources Folders, The Values Folder, Leveraging Android XML, Screen Sizes, Launching Your Application: The AndroidManifest.xml File, Creating Your First Android Application

Android Framework Overview: The Foundation of OOP, The APK File, Android Application Components, Android Activities: Defining the User Interface, Android Services: Processing in the Background, Broadcast Receivers: Announcements and Notifications, Content Providers: Data Management, Android Intent Objects: Messaging for Components, Android Manifest XML: Declaring Your Components

Unit-3

Views and Layouts, Buttons, Menus, and Dialogs, Graphics Resources in Android: Introducing the Drawables, Implementing Images, Core Drawable Subclasses, Using Bitmap, PNG, JPEG and GIF Images in Android, Creating Animation in Android

Handling User Interface(UI) Events: An Overview of UI Events in Android, Listening for and Handling Events, Handling UI Events via the View Class, Event Callback Methods, Handling Click Events, Touchscreen Events, Keyboard Events, Context Menus, Controlling the Focus,

Unit-4

Content Providers: An Overview of Android Content Providers, Defining a Content Provider, Working with a Database

Intents and Intent Filters: What is an Intent, Implicit Intents and Explicit Intents, Intents with Activities, Intents with Broadcast Receivers Advanced Android, New Features in Android 4.4, iOS Development Environment: Overview of iOS, iOS Layers, Introduction to iOS application development

Windows phone Environment: Overview of windows phone and its platform, Building windows phone application

Unit-5

Introduction to VHDL: Structure of HDL Module, Comparison of VHDL and Verilog, Introduction to Simulation and Synthesis Tools, Test Benches. VHDL Modules, Delays, data flow style, behavioral style, structural style, mixed design style, simulating design. Introduction to Language Elements, Keywords, Identifiers, White Space Characters, Comments, format. VHDL terms, describing hardware in VHDL, entity, architectures, concurrent signal assignment, event scheduling, statement concurrency, structural designs, sequential behavior, process statements, processexecution, sequential statements, architecture selection, configuration statements

Suggested Books:

- 1. Beginning Android 4, OnurCinar, Apress Publication
- 2. Professional Android 4 Application Development, Reto Meier, Wrox
- 3. Beginning iOS 6 Development: Exploring the iOS SDK, David Mark, Apress
- 4. Beginning Windows 8 Application Development, IstvánNovák, ZoltanArvai, GyörgyBalássy and David Fulop
- 5. Professional Windows 8 Programming: Application Development with C# and XML,Allen Sanders and Kevin Ashley, WroxPublication
- Programming with Mobile Applications: Android, iOS, and Windows Phone 7, Thomas Duffy, Course Technology, Cengage Learning 2013
- 7. A VHDL Primer J. Bhasker, Prentice Hall, 1999, III Edition. Verilog HDL-A guide to digital design and synthesis-Samir Palnitkar, Pearson, 2nd edition.

ELECTRONICS LABORATORY

The scheme of practical examination will be as follows-

Experiment	 30
Viva	 10
Sessional	 10
Total	 50

ELB 303P: INDUSTRIAL ELECTRONICS & PCB Design LAB (Hardware and Circuit Simulation Software) Max.Marks:25

- 1. Study of I-V characteristics of DIAC
- 2. Study of I-V characteristics of a TRIAC
- 3. Study of I-V characteristics of a SCR
- 4. SCR as a half wave and full wave rectifiers with R and RL loads
- 5. DC motor control using SCR.
- 6. DC motor control using TRIAC.
- 7. AC voltage controller using TRIAC with UJT triggering.
- 8. Study of parallel and bridge inverter.
- 9. Design of snubber circuit
- 10. Study of chopper circuits

Design and Fabrication of Printed Circuit Boards

- Design automation, Design Rule Checking; Exporting Drill and Gerber Files; Drills;
 Footprints and Libraries Adding and Editing Pins, copper clad laminatesmaterials of copper clad laminates, properties of laminates (electrical & physical),
- 2. Study of soldering techniques. Film master preparation, Image transfer, photo printing, Screen Printing, Plating techniques etching techniques,
- **3.** Study of Mechanical Machining operations, Lead cutting and Soldering Techniques, Testing and quality controls.
- **4.** Study of Lead cutting and Soldering Techniques, Testing and quality controls.

Suggested Books:

- 1. Printed circuit Board Design & Technology by Walter C. Bosshart, Tata McGraw Hill.
- 2. Printed Circuit Board –Design, Fabrication, Assembly & Testing by R.S.Khandpur,TATA McGraw Hill Publisher

ELB 304 P: Mobile Application & VHDL Lab

M.M.- 25

Mobile communication Lab

- 1. Develop an application that uses GUI components, Font and Colors.
- 2. Develop an application that uses Layout Managers and event listeners.
- 3. Develop a native calculator application.
- 4. Write an application that draws basic graphical primitives on the screen.
- 5. Develop an application that makes use of database.
- 6. Develop an application that makes use of RSS Feed.
- 7. Implement an application that implements Multi threading.
- 8. Develop a native application that uses GPS location information.
- 9. Implement an application that writes data to the SD card.
- 10. Implement an application that creates an alert upon receiving a message.
- 11. Write a mobile application that creates alarm clock.

Introduction to VHDL

- 12. Write the VHDL Code & Simulate it for the following gates.
 - a. Two I/P AND Gates.
 - b. Two I/P OR Gates.
 - c. Two I/P NAND Gates
 - d. Two I/P NOR Gates.
 - e. Two I/P Ex-OR Gates.
 - f. NOT Gates
- Write VHDL programs for the following circuits, check the wave forms and the hardware generated
 - a. Half adder b. Full adder

NEW CURRICULUM OF B.Sc. PART III

CHEMISTRY

The new curriculum will comprise of three papers of 33, 33 and 34 marks each and practical work of 50 marks. The Curriculum is to be completed in 180 working days as per UGC norms and conforming to the directives of Govt. of Chhattisgarh. The theory papers are of 60 hrs. each duration and practical work of 180 hrs duration.

Paper – I INORGANIC CHEMISTRY

60 Hrs., Max Marks 33

UNIT-I

METAL-LIGAND BONDING IN TRANSITION METAL COMPLEXES

- (A) Limitations of valence bond theory, Limitation of Crystal Field Theory, Application of CFSE, tetragonal distortions from octahedral geometry, Jahn–Teller distortion, square planar geometry. Qualitative aspect of Ligand field and MO Theory.
- (B) Thermodynamic and kinetic aspects of metal complexes. A brief outline of thermodynamic stability of metal complexes and factors affecting the stability, substitution reactions of square planar complexes, Trans- effect, theories of trans effect. Mechanism of substitution reactions of square planar complexes.

UNIT-II

MAGNETIC PROPERTIES OF TRANSITION METAL COMPLEXES

Types of magnetic behavior, methods of determining magnetic susceptibility, spin only formula, L-S coupling, correlation of $\mu_{so(spin\ only)}$ and $\mu_{eff.}$ values, orbital contribution to magnetic moments, application of magnetic moment data for 3d metal complexes.

Electronic spectra of Transition Metal Complexes.

Types of electronic transitions, selection rules for d-d transitions, spectroscopic ground states, spectro-chemical series. Orgel-energy level diagram for d^1 and d^2 states, discussion of the electronic spectrum of $[Ti(H_2O)_6]^{3+}$ complex ion.

UNIT-III

ORGANOMETALLIC CHEMISTRY

Definition and classification of organometallic compounds on the basis of bond type. Concept of hapticity of organic ligands. Metal carbonyls: 18-electron rule, electron count of mononuclear,

polynuclear and substituted metal carbonyls of 3d series. General methods of preparation (direct combination, reductive carbonylation, thermal and photochemical decomposition) of mono and binuclear carbonyls of 3d series.

Structures of mononuclear and binuclear carbonyls of Cr, Mn, Fe, Co and Ni using VBT. π -acceptor behavior of CO (MO diagram of CO to be discussed), Zeise's salt: Preparation and structure.

Catalysis by Organometallic Compounds –

Study of the following industrial processes and their mechanism:

- 1. Alkene hydrogenation (Wilkinsons Catalyst)
- 2. Polymeration of ethane using Ziegler Natta Catalyst

UNIT-IV

BIOINORGANIC CHEMISTRY

Essential and trace elements in biological processes, Excess and deficiency of some trace metals, Toxicity of some metal ions (Hg, Pb, Cd and As), metalloporphyrins with special reference to hemoglobin and myoglobin. Biological role of alkali and alkaline earth metals with special reference to Ca²⁺ and Mg²⁺, nitrogen fixation.

UNIT-V

HARD AND SOFT ACIDS AND BASES (HSAB) Classification of acids and bases as hard and soft. Pearson's HSAB concept, acid-base strength and hardness and softness. Symbiosis, Applications of HSAB principle.

INORGANIC POLYMERS

Types of inorganic polymers, comparison with organic polymers, synthesis, structural aspects and applications of silicones. Silicates, phosphazenes and polyphosphate.

REFERENCE BOOKS

- 1. Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinson and P. L. Gaus, Wiley.
- 2. Concise Inorganic Chemistry, J. D. Lee, ELBS.
- 3. Concepts of Models of Inorganic Chemistry, B. Douglas, D. Mc Daniel and J. Alexander, John Wiley.
- 4. Inorganic Chemistry, D. E. Shriver, P. W. Atkins and C. H. Langford, Oxford.

- 5. Inorganic Chemistry, W. W. Porterfield, Addison Wiley.
- 6. Inorganic Chemistry, A. G. Sharp, ELBS.
- 7. Inorganic Chemistry, G. L. Miessler and D. A. Tarr, Prentice Hall.
- 8. Advanced Inorganic Chemistry, Satya Prakash.
- 9. Advanced Inorganic Chemistry, Agarwal and Agarwal.
- 10. Advanced Inorganic Chemistry, Puri, Sharma, S. Naginchand.
- 11. Inorganic Chemistry, Madan, S. Chand.
- 12. Aadhunik Akarbanic Rasayan, A. K. Shrivastav & P. C. Jain, Goel Pub.
- 13. Uchchattar Akarbanic Rasayan, satya Prakash & G. D. Tuli, Shyamal Prakashan.
- 14. Uchchattar Akarbanic Rasayan, Puri & Sharma.
- 15. Selected topic in Inorganic Chemistry by Madan Malik & Tuli, S. Chand.

Paper – II ORGANIC CHEMISTRY

60 Hrs. Max Marks 33

UNIT-I

HETEROCYCLIC COMPOUNDS

Classification and nomenclature, Structure, aromaticity in 5-membered and 6-membered rings containing one heteroatom; Synthesis, reactions and mechanism of substitution reactions of: Furan, Pyrrole (Paal-Knorr synthesis, Knorr pyrrole synthesis, Hantzsch synthesis), Thiophene, Pyridine (Hantzsch synthesis), Indole (Fischer indole synthesis and Madelung synthesis), Quinoline and isoquinoline, (Skraup synthesis, Friedlander's synthesis, Knorr quinoline synthesis, Doebner-Miller synthesis, Bischler-Napieralski reaction, Pictet- Spengler reaction, Pomeranz-Fritsch reaction).

UNIT II

A. ORGANOMETALLIC REAGENT

Organomagnesium compounds: Grignard reagents formation, structure and chemical reactions.

Organozinc compounds: formation and chemical reactions.

Organolithium compounds: formation and chemical reactions.

B. ORGANIC SYNTHESIS VIA ENOLATES

Active methylene group, alkylation of diethylmalonate and ethyl acetoacetate, Synthesis of ethyl acetoacetate: The Claisen condensation. Keto-enol tautomerism of ethyl acetoacetate. Robbinson annulations reaction.

UNIT-III

BIOMOLECULES

A. CARBOHYDRATES

Occurrence, classification and their biological importance. Monosaccharides: relative and absolute configuration of glucose and fructose, epimers and anomers, mutarotation, determination of ring size of glucose and fructose, Haworth projections and conformational structures; Interconversions of aldoses and ketoses; Killiani Fischer synthesis and Ruff degradation; Disaccharides – Structural comparison of maltose, lactose and sucrose. Polysaccharides – Elementary treatment of starch and cellulose.

B. AMINO ACIDS, PROTEINS AND NUCLEIC ACIDS

Classification and Nomenclature of amino acids, Configuration and acid base properties of

amino acids, Isoelectric Point, Peptide bonds, Protein structure, denaturation/ renaturation, Constituents of nucleic acid, DNA, RNA nucleoside, nucleotides, double helical structure of DNA.

UNIT-IV

SYNTHETIC POLYMERS

A. Addition or chain growth polymerization, Free radical vinyl polymerization, Ziegler-Natta polymerization, Condensation or Step growth polymerization, polyesters, polyamides, phenols- formaldehyde resins, urea-formaldehyde resins, epoxy resins and polyurethanes, natural and synthetic rubbers.

B. SYNTHETIC DYES

Colour and constitution (Electronic Concept). Classification of Dyes. Chemistry of dyes. Chemistry and synthesis of Methyl Orange, Congo Red, Malachite Green, Crystal Violet, phenolphthalein, fluorescein, Alizarine and Indigo.

UNIT-V

A. INFRA-RED SPECTROSCOPY

Basic principle, IR absorption Band their position and intensity, IR spectra of organic compounds.

B. UV-VISIBLE SPECTROSCOPY

Beer Lambert's law, effect of Conjugation, Types of electronic transitions λ_{max} , Chromophores and Auxochromes, Bathochromic and Hypsochromic shifts, Intensity of absorption Visible spectrum and colour.

C. NMR SPECTROSCOPY

Basic principles of Proton Magnetic Resonance, Tetramethyl silane (TMS) as internal standard, chemical shift and factors influencing it; Spin – Spin coupling and coupling constant (J); Anisotropic effects in alkene, alkyne, aldehydes and aromatics, Interpretation of NMR spectra of simple organic compounds. ¹³CMR spectroscopy: Principle and applications.

REFERENCE BOOKS

- 1. Organic Chemistry, Morrison and Boyd, Prentice-Hall.
- 2. Organic Chemistry, L. G. Wade Jr. Prentice Hall.

- 3. Fundamentals of Organic Chemistry, Solomons, John Wiley.
- 4. Organic Chemistry, Vol I, II, III S. M. Mukherjee, S. P. Singh and R. P. Kapoor, Wiley Easters (New Age).
- 5. Organic Chemistry, F. A. Carey, McGraw Hill.
- 6. Introduction to Organic Chemistry, Struiweisser, Heathcock and Kosover, Macmillan.
- 7. Acheson, R.M. Introduction to the Chemistry of Heterocyclic compounds, John Wiley & Sons (1976).
- 8. Graham Solomons, T.W. Organic Chemistry, John Wiley & Sons, Inc.
- 9. McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning IndiaEdition, 2013.
- 10. Kalsi, P. S. Textbook of Organic Chemistry 1st Ed., New Age International (P) Ltd. Pub.
- 11. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press.

Paper – III PHYSICAL CHEMISTRY

60 Hrs., Max Marks 34

UNIT-I

OUANTUM MECHANICS-I

Black-body radiation, Planck's radiation law, photoelectric effect, Compton effect. Operator: Hamiltonian operator, angular momentum operator, Laplacian operator, postulate of quantum mechanics, eigen values, eigen function, Schrodinger time independent wave equation, physical significance of $\psi \& \psi^2$, application of Schrodinger wave equation to particle in a one dimensional box, hydrogen atom (separation into three equations) radial and angular wave

functions.

UNIT-II

A. QUANTUM MECHANICS-II

Quantum Mechanical approach of Molecular orbital theory, basic ideas-criteria for forming M.O. and A.O., LCAO approximation, formation of H₂⁺ ion, calculation of energy levels from wave functions, bonding and antibonding wave functions, Concept of σ , σ^* , π , π^* orbitals and their characteristics, Hybrid orbitals-sp,sp²,sp³ Calculation of coefficients of A.O.'s used in these hybrid orbitals.

Introduction to valence bond model of H₂, comparison of M.O. and V.B. models. Huckel

theory, application of Huckel theory to ethene, propene, etc.

UNIT III

SPECTROSCOPY

Introduction: Characterization of Electromagnetic radiation, regions of the spectrum, representation of spectra, width and intensity of spectral transition, Rotational Spectrum of Diatomic molecules. Energy levels of a rigid rotor, selection rules, determination of bond length, qualitative description of non-rigid rotator, isotopic effect.

Vibrational Spectroscopy: Fundamental vibration and their symmetry vibrating diatomic molecules, Energy levels of simple harmonic oscillator, selection rules, pure vibrational spectrum, determination of force constant, anharmonic oscillator

Raman spectrum: Concept of polarizability, quantum theory of Raman spectra, stokes and antistokes lines, pure rotational and pure vibrational Raman spectra. Applications of Raman Spectra.

Electronic Spectroscopy: Basic principles, Electronic Spectra of diatomic molecule, Franck-

Condon principle, types of electronic transition, application of electronic spectra.

UNIT-IV

ELECTROCHEMISTRY-I

- **A.** Electrolytic conductance: Specific and equivalent conductance, measurement of equivalent conductance, effect of dilution on conductance, Kohlrausch law, application of Kohlrausch law in determination of dissociation constant of weak electrolyte, solubility of sparingly soluble electrolyte, absolute velocity of ions, ionic product of water, conductometric titrations.
- **B.** Theories of strong electrolyte: limitations of Ostwald's dilution law, weak and strong electrolytes, Elementary ideas of Debye-Huckel-Onsager's equation for strong electrolytes, relaxation and electrophoretic effects.
- **C.** Migration of ions: Transport number, Determination by Hittorf method and moving boundary method, ionic strength.

UNIT-V

ELECTROCHEMISTRY-II

- **A.** Electrochemical cell and Galvanic cells reversible and irreversible cells, conventional representation of electrochemical cells, EMF of the cell and effect of temperature on EMF of the cell, Nernst equation Calculation of ΔG , ΔH and ΔS for cell reactions.
- **B.** Single electrode potential : standard hydrogen electrode, calomel electrode, quinhydrone electrode, redox electrodes, electrochemical series
- **C.** Concentration cell with and without transport, liquid junction potential, application of concentration cells in determining of valency of ions , solubility product and activity coefficient
- **D.** Corrosion-types, theories and prevention

REFERENCE BOOKS

- 1. Physical chemistry, G.M.Barrow. International Student Edition McGraw Hill.
- 2. University General Chemistry, CNR Rao, Macmillan.
- 3. Physical Chemistry R.A.Alberty, Wiley Eastrn.
- 4. The elements of Physical Chemistry P.W.Alkin,Oxford.
- 5. Physical Chemistry through problems, S.K.Dogra, Wiley Eastern.
- 6. Physical Chemistry B.D.Khosla.
- 7. Physical Chemistry, Puri & Sharma.
- 8. Bhoutic Rasayan, Puri & Sharma.
- 9. Bhoutic Rasayan, P.L.Soni.
- 10. Bhoutic Rasayan, Bahl & Tuli.
- 11. Physical Chemistry, R.L.Kapoor, Vol- I-IV.
- 12. Introduction to quantum chemistry, A.K. Chandra, Tata McGraw Hill.
- 13. Quantum Chemistry, Ira N. Levine, Prentice Hall.

B.Sc. Part-III

PRACTICAL

Max. Marks-50

INORGANIC CHEMISTRY

Gravimetric analysis:

- Estimation of nickel (II) using Dimethylglyoxime (DMG).
- Estimation of copper as CuSCN
- Estimation of iron as Fe₂O₃ by precipitating iron as Fe(OH)₃.
- Estimation of Al (III) by precipitating with oxine and weighing as Al(oxine)₃ (aluminium oxinate).
- Estimation of Barium as BaSO₄

Inorganic Preparations:

- Tetraamminecopper (II) sulphate, [Cu(NH₃)₄]SO₄.H₂O
- Cis and trans $K[Cr(C_2O_4)_2, (H_2O)_2]$ Potassium dioxalatodiaquachromate(III)
- Tetraamminecarbonatocobalt (III) ion
- Potassium tris(oxalate)ferrate(III)/ Sodium tris(oxalate)ferrate(III)
- Cu(I) thiourea complex, Bis (2,4-pentanedionate) zinc hydrate; Double salts (Chrome alum/ Mohr's salt)

ORGANIC CHEMISTRY

- 1. Preparation of organic Compounds
 - Acetylation of one of the following compounds: amines (aniline, o-, m-, p- toluidines and o-,m-, p-anisidine) and phenols (β-naphthol, vanillin, salicylic acid)
 - Benzolyation of one of the following amines (aniline, o-, m-, p- toluidines and o-, m-, panisidine) and one of the following phenols (β-naphthol, resorcinol, p cresol) by Schotten-Baumann reaction.
 - Bromination of any one of the following: a. Acetanilide by conventional methods b.Acetanilide using green approach (Bromate-bromide method)
 - Nitration of any one of the following: a. Acetanilide/nitrobenzene by conventional method b. Salicylic acid by green approach (using ceric ammonium nitrate).
 - Reduction of p-nitrobenzaldehyde by sodium borohydride.
 - Hydrolysis of amides and esters.
 - Semicarbazone of any one of the following compounds: acetone, ethyl methyl ketone, cyclohexanone, benzaldehyde.

- Benzylisothiouronium salt of one each of water soluble and water insoluble acids (benzoic acid, oxalic acid, phenyl acetic acid and phthalic acid).
- Aldol condensation using either conventional or green method.
- Benzil-Benzilic acid rearrangement.
- Preparation of sodium polyacrylate.
- Preparation of urea formaldehyde.
- Preparation of methyl orange.

The above derivatives should be prepared using 0.5-1g of the organic compound. The solid samples must be collected and may be used for recrystallization, melting point and TLC.

- 2. Qualitative Analysis Analysis of an organic mixture containing two solid components using water, NaHCO₃, NaOH for separation and preparation of suitable derivatives.
- 3. Extraction of caffeine from tea leaves.
- 4. Analysis of Carbohydrate: aldoses and ketoses, reducing and non-reducing sugars.
- 5. Identification of simple organic compounds by IR spectroscopy and NMR spectroscopy. (Spectra to be provided).
- 6. Estimation of glycine by Sorenson's formalin method.
- 7. Study of the titration curve of glycine.
- 8. Estimation of proteins by Lowry's method.
- 9. Study of the action of salivary amylase on starch at optimum conditions.
- 10. Effect of temperature on the action of salivary amylase.

PHYSICAL CHEMISTRY

Conductometry

- Determination of cell constant
- Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid.
- Perform the following conductometric titrations:
 - i. Strong acid vs. strong base
 - ii. Weak acid vs. strong base
 - iii. Mixture of strong acid and weak acid vs. strong base
 - iv. Strong acid vs. weak base
- To determine the strength of the given acid conductometrically using standard alkali solution.
- To determine the solubility and solubility product of a sparingly soluble electrolyte conductometrically
- To study the saponification of ethyl acetate conductometrically.

Potentiometry/pH metry

Perform the following potentio/pH metric titrations:

- i. Strong acid vs. strong base
- ii. Weak acid vs. strong base
- iii. Dibasic acid vs. strong base
- iv. Potassium dichromate vs. Mohr's salt
- v. Determination of pKa of monobasic acid

UV/ Visible spectroscopy

- Verify Lambert-Beer's law and determine the concentration of CuSO₄/KMnO₄/K₂Cr₂O₇ in a solution of unknown concentration
- Determine the concentrations of KMnO₄ and K₂Cr₂O₇ in a mixture.
- Study the kinetics of iodination of propanone in acidic medium.
- Determine the amount of iron present in a sample using 1,10-phenathroline.
- Determine the dissociation constant of an indicator (phenolphthalein).
- Study the kinetics of interaction of crystal violet/ phenolphthalein with sodium hydroxide.
- Study of pH-dependence of the UV-Vis spectrum (200-500 nm) of potassium dichromate.
- Spectral characteristics study (UV) of given compounds (acetone, acelaldehyde, acetic acid, etc.) in water.
- Absorption spectra of KMnO₄ and $K_2Cr_2O_7$ (in 0.1 M H_2SO_4) and determine λ_{max} values.

Note: Experiments may be added/deleted subject to availability of time and facilities

REFERENCE BOOKS:

- 1. Vogel, A.I. Quantitative Organic Analysis, Part 3, Pearson (2012).31
- 2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- 3. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson (2012)
- 4. Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000).
- 5. Ahluwalia, V.K. & Dhingra, S. Comprehensive Practical Organic Chemistry: Qualitative Analysis, University Press (2000)
- 6. Manual of Biochemistry Workshop, 2012, Department of Chemistry, University of Delhi.

Five experiments are to be performed.

1. **Inorganic** - Two experiments to be performed. Gravimetric estimation compulsory

08 marks. (Manipulation 3 marks)

Anyone experiment from synthesis and analysis

04 marks.

2. **Organic** - Two experiments to be performed. Qualitative analysis of organic mixture containing two solid components. compulsory carrying **08 marks** (03 marks for each compound and two marks for separation).

One experiment from synthesis of organic compound (Single step)

04 marks.

3. Physical-One physical experiment

12 marks.

4. Sessional

04 marks.

5. Viva Voce

10 marks.

In case of Ex-Students one mark each will be added to Gravimetric analysis and Qualitative analysis of organic mixture and two marks in Physical experiment.

BSC(CS) TT Year

COMPUTTER SCIENCE

PAPER - I

(Paper Code-0909)

COMPUTER HARDWARE PART-C

ATM: The emphasis is on the design concepts & organisational details of the common PC, leaving the complicated Electronics of the system to the computer engineers.

Objective of the Course :

- To introduce the overall organisation of the microcomputers and operating systems.
- To introduce the interaction of common devices used with computers with operating softwares, excluding the Assembly languages, with special reference to DOS/WINDOWS
- 3. To introduce the working of hardware components, Micro-Processor and various chips used in micro-computers by operating system, without the use of electronic circuitry.
- To introduce the use of operating systems architecture with IBM-PC & clones, excluding Assembly language, with forms an important part of hardwares.
- Since the computer organisation study is very vast & complicated, so the study is N.B. : restricted only to the description and understanding part, hence the paper-setter is requested to keep this important factor in mind.

UNIT-1: ORGANISATION OF Micro-Processor & MIRCO-COMPUTER:-

- Introduction & organisation of Micro-Computer :
 - a Basic Components of Micro-computer : Basic Block; Prom ram memory; Data memory; I/O Ports; Clock generator; Integration of functional blocks.
 - b) Interconnecting Components in a Micro-computer : Necessary functional block; Bussed architecture for microcomputer; memory addressing; Addressing I/O ports; comparision of I/O mapped and memory mapped I/O.
 - (d) Input Output Techniques : Non-CPU devices, Program & interrupt controlled I/O; Hardware controlled I/O or DMA.
- An Introduction to the various as :
 - (a) General understanding of different µP or CPU: Intel 8088, 286, 386, 486, 586 Pentium, P54C, MMX P55C; Motorola 6800 & 88100 series; CYRIX & AMD CPUs.
 - the Registers of CPU: (Give Example of P-8088) Register organisation of 8088, Scrach pad segment, pointer, Index and Flag, Registers.
 - d Memory addressing modes of P-8088 : Segment offset; Data addressing modes; Addressing for branch instructions.
 - (d) I/O Addressing with P-8088 : Memory mapped I/O & I/O mapped I/O.

UNIT-2 : SYSTEM HARDWARE ORGANISATION OF COMPUTERS :

- Hardware Organisation of the Personal Computer :
 - (a) Block diagram with various parts of PC.
 - b) The Mother Board of General P.C.: 8088 CPU; ROM & RAM; Keyboard

B.Sc.-III

(Dr.J. Drg Pd. Rue)

Juner July (CL.K.Gavel) Hari handan kulan kulan

& its interface; System timer/counters; Hardware interrupt vectoring; DMA controller & channels; Interfacing to audio speaker; Bus slots & facture

- d The Serial I/O ports, COM-1 & COM-2.
- (1) The parallel Port for Printer.
- (e) Expansion Slots for RAM.
- Disk Controllers : For floppy, Hard disk, CD-ROM & Cassets drives.

2. The Video Display of PCs :

- (a) Video Monitors; Monochrome and colour.
- (b) Video Display Adapters & Their Video Modes; Monochrome & colour graphics adapters.
- d Video Control Through ANSI-SYS.
- d Video Control Through ROM-BOIS : INT 10H.
- Direct Video Control; Monochrom & colour graphics adapters.
- Installing Customized Character Sets.

UNIT-3 : ORGANISATION OF OPERTING SYSTEM WITH SYSTEM HARDWARE :

The ROM-BIOS Services :

- (a) Introduction to UNIX, ENIX, SUN, solaris, DOS & MAC with special reference to DOS & Windows, its ver., as DOS becomes more popular than others in PCs.
- (b) The ROM-BIOS Diskette Services, INT 13H.
- (d) The ROM-BIOS Serial Port Services, INT 14H.
- (d) The ROM-BIOS Keyboard Services, INT 16H.
- (e) The ROM-BIOS Printer Services, INT 17H.
- Miscellaneous Service Provided by the ROM-BIOS : INT 05H, INT 11H, INT 12H, INT 18H, INT 19H, INT 1AH.

The fundamental of Operating System viz. DOS/WINDOWS :

- (a) The loading of DOS & Its Basic Structure ; ROM bootstrap, IO.SYS, DOS.SYS & Command..COM.
- b) The Execution of the programs under DOS; EXEC functions, program segment prefix; Features of COM & EXE program files.
- d Device Handling by Dos; FDD, HDD, CON, Keyboard, PRN, AUX, CLOCK and NUL devices; Block devices; Character devices; Driver installation sequence.
- (d) File Structures of DOS ;
- (e) The DOS Interrupts : INT 20H-2FH
- The DOS functions through INT 21H; Discuss only the understanding part of various other DOS function to handle hard & softwares.
- (9) Installation of windows: Important system files in windows.

UNIT-4 : ORGANIZATION & HANDLING BY OPERATING SYSTEMS :

1 Disk and Files under DOS :

(a) Logical Structure of a Disk : Organisation of disk for use; Boot record ; FAT

1-6-2018 CL.K.Gavel Hav Manden Provide Findle

files; disk or root directory.

- (b) File Organisation on a DOS disk : Logical volumes ; Sub directories; Volume
- (d Manipulating Files under DOS : File attributes ; date and time, file Access; FCB functions.

Memory Allocation, Program Loading and Execution:

- (a) Memory Management under DOS : EXEC loader; Memory Management & its functions; Modifying a Program's memory allocation.
- (b) Loading and Executing Programs under DOS: The EXEC function; Memory considerations; parameter blocks; calling & returning from EXEC.
- (d) Loading the program overlays through EXEC.

UNIT-5 : ORGANISATION OF HARDWARE BY OPERATING SYSTEM :

- 1 Interrupt Handling through DOS :
 - (a) Types of interrupts.
 - (b) Interrupt Vector Table in PC.
 - d Interrupt Service Routines.
 - 6) Special Interrupts in PC : Clock Interrupt; The -C or Break Interrupt ; DOS reserved interupt INT 28H; Patching memory resident routines.

2. Filters for DOS :

- (a) Filters in operating systems.
- (b) Redirection of I/O under DOS.
- (d) The Filters Supplied with DOS.
- (d) Writing Filters to run under DOS.

3. Handling of Various Versions of Windows O.S. :

- (a) Setup Installation
- (b) Trouble shooting
- d Networking features

Text Book :

 Hardware and Software of Personal Computers. By Sanjay K. Bose. (Wiley Eastern Ltd. New Delhi).

Supporting Text Books :

- 1 Digital System from Gates to Mircoprocessor. By Sanjay K. Bose. (Wiley Eastern Ltd. New Delhi).
- 2 Computer Fundamentals : Architecture & Organisation. By B. Ram.. (Wiley Eastern Ltd. New Delhi).

Reference Books :

- 1 IBM PC-XT and Clones : By Govinda Rajalu.
- 2 Microprocessor and interfacing: By Douglas Hall.
- 3. Insight the IBM-PC: Peter Norton.
- 4. Micriprocessor System: 8086/8088 family architecture, programming & design Jener Gard (L. K. Gavel) Hari shanton Presed Toole : By Liu and Gibson.

(Dr. J.Drg Pd. Ro)

PAPER - II

(Paper Code-0910)

Atm : To introduce DBMS and RDBMS using Back-end tool and Front-end tool.

Object of the Course :

- 1 To introduce Data BAse Management System concepts.
- 2 To introduce the Relational Database Management System and Relational Database Design.
- 3. To introduce the RDBMS software and utility of query language.
- 4. To introduce basic concept of GUI Programming and database connectivity using Visual Basic.

UNIT-1 : CONCEPT OF D.B.M.S. AND DATA MODELS

- (a) Introduction to DBMS :- Purpose of Data base systems, views of data, Data Modeling Database Languages, Transaction management, Storage Management, Database Administrator and User, Database System Structure.
- (b) E-R Model : Basic concepts, Constraints, Keys, Mapping Constaint, E-R Diagram, Weak and Strong Entity sets, E-R Database Schema, Reduction of an E-R Schema to Table.

UNIT-2. : RELATIONAL DATABASE MANAGEMENT SYSTEM

- (a) Relational Model : Structure of Relational Database, Relational Algebra, Domain Relational Calculus, Extended Relational- Algebra Operation, Modification of database, Views.
- to Relational Database Design : Pitfalls in Relational Database Desing, Decomposition Functional Dependencies, Normalization: 1NF, 2NF, BCNF, 3NF, 4NF,

UNIT-3 : INTRODUCTION TO RDBMS SOFTWARE - ORACLE

- (a) Introduction: Introduction to personal and Enterprises Oracle, Data Types, Commercial Query Language, SQL, SQL*PLUS.
- b) DDL and DML : Creating Table, Specifying Integrity Constraint, Modifying Existing Table, Dropping Table, Inserting Deleting and Updating Rows in as Table, Where Clause, Operators, ORDER BY, GROUP Function, SQL Function, JOIN, Set Operation, SQL Sub Queries. Views : What is Views, Create, Drop and Retrieving data from views.
- (d) Security: Management of Roles, Changing Passward, Granting Roles & Privilege, with drawing privileges.
- (d) PL/SQL : Block Structure in PL/SQL, Variable and constants, Running PL/SQL in the SQL*PLUS, Data base Access with PL/SQL, Exception Handling, Record Data type in PL/SQL, Triggers in PL/SQL.

UNIT-4 : G.U.I. PROGRAMMING

- (a) Introduction to Visual Basic : Event Driven Programming, IDE, Introduction to Object, Controlling Objects, Models and Events, Working with Forms, MDI Form Working with standard Controls.
- b) Overview of Variables, Declaring, Scope, Arrays, User defined data types, Constants, Working with procedures: Function, Subroutine, and Property.

B.Sc.-III

Dairede (Dr J Dropp Pa. for)

Dr. Susay anna) (c. K. Gavel)

- Working with Data, Time, Format, String, and Math's Function. Controlling Program Execution: Comparison and Logical Operators, If... Then statements, Select Case Statement, Looping Structures, Exiting a loop. Error Trapping and Debugging.
- (d) File Organization: Saving data to file, Sequential and Random access file, the desing and coding.

UNIT-5 : V DATA BASE PROGRAMMING IN VB

- (a) Introduction :- Concept of DAO, RDO, ADO, input validation : field & form level validation, ADO object model : the ADO object Hierarchy, the connection object, the command object, record set object, parameter object, field object, record object, stream object, Error object, parameter object.
- (b) Using Bound control to Present ADO data: Using the ADO data control, ADO data control properties, binding simple controls: Data list, data combo, Data Grid, Data Form Wizard : single form wizard, Grid form, master/Detail form. Programming the ADO data control: Refresh method, Event, Hierarchical flex Grid control.
- (Data Environment & Data Report : Creating connection, Using command object in the data Environment, Data Environment option and operation, Binding Form to the data Environment, ADO Events in the Data report, Print Preview, Print, Export, Data report in code: Data reports Events, Binding data reports Directly.

REFERENCE BOOKS :

- By Hery F. Korth, Tata McGraw Hill Data Base System Concept
- Nawathe & Elmasri (Pearson educations) 2 Fundamental of Data Base System Concept
- 3. Oracle Complete Reference By Oracle Press
- 4 Introduction to OOPS & VB By V.K. Jain, Vikas Publishing House
- 5 Database Programming VB 6 : By B.P.B. Publication

PRACTICALS :

1 Practicals on Oracle :

At least 20 practicals covering the SQL, PL/SQL, Triggers, Views.

2 Practicals on Visual Basic :

At least 20 pracricals on VB that covering basic and data controls components.

Server (106.18 Hari shanken Presed Took 11.06.18 Any 1/6118 (Dr. A. K. Prairvedie) (Dr. A. K. Prairvedie) (Dr. J. Dynki-law)

कक्षा / Class- B.Sc-III

Paper -I

जीवाश्म विज्ञान एवं संस्तर विज्ञान

(Palaeontology & Stratigraphy)

इकाई–01	(1)	जीवाश्म विज्ञानः	जीवाश्म,	परिभाषा,	जीवाश्मन	की	आवश्यक	परिस्थितियाँ	एवं
		विधियाँ							

- (2) जीवश्मों के उपयोग, सूचक-जीवाश्म एवं उनका महत्व
- (3) संस्तर विज्ञान, पुरापारिस्थितिकी एवं पुराभूगोल के अध्ययन में जीवाश्म विज्ञान का महत्व।
- (4) सूक्ष्मजीवाश्मविज्ञान एवं उसका महत्व।
- (5) पादप जीवाश्मों का अध्ययन एवं उनका महत्व।

इकाई-02 (1) फोरामिनिफेरा एवं एंथोजोआ जीवाश्मों की आकारिकी एवं भूवैज्ञानिक वितरण।

- (2) गेस्ट्रोपोडा एवं लेमिलिब्रेन्किया जीवाश्मों की आकारिकी एवं भूवैज्ञानिक वितरण।
- (3) सिफेलोपोड़ा जीवाश्मों की आकारिकी एवं भूवैज्ञानिक वितरण।
- (4) इकिनायडी एवं ब्रेकियोपोडा जीवाश्मों की आकारिकी एवं भूवैज्ञानिक वितरण।
- (5) ट्राइलोबाइट एवं ग्रेप्टोलाइट जीवाश्मों की आकारिकी एवं भूवैज्ञानिक वितरण।

इकाई-03 (1) संस्तर विज्ञान के सिद्धान्त, भूवैज्ञानिक समय सारणी।

- (2) अश्मसंस्तरिक, कालानुक्रम संस्तरिक एवं जैव संस्तरिक इकाईयों के विषय में मूलभूत धारणायें।
- (3) भारतीय उपमहाद्वीप का संरचनात्मक एवं भौतिकीय उपविभाजन एवं उसकी विशिष्टतायें।
- (4) भारत वर्ष के आद्यमहाकल्पीय (धारवार) शैलों का वितरण, वर्गीकरण, एवं आर्थिक महत्व।
- (5) छत्तीसगढ़ के बस्तर, रावघाट, संघों का वितरण, संस्तर विज्ञान एवं आर्थिक महत्व।

इकाई-04 (1) विन्ध्य एवं छत्तीसगढ़ महासंघ के शैलों के वितरण, संसतर विज्ञान एवं आर्थिक

महत्व।

- (2) गोंडवाना महासंघ का संस्तर विज्ञान, पुराजलवायु, भौगोलिक वितरण एवं आर्थिक महत्व।
- (3) डेक्कन ट्रेप का संस्तर विज्ञान, भौगोलिक वितरण एवं आयु।
- (4) बाघ संस्तर एवं लेमेटा संस्तर का संस्तर विज्ञान, भौगोलिक वितरण एवं जीवाश्म।
- (5) साल्ट रेंज क्षेत्रों के पुराजीव समूहों का भौगोलिक वितरण संस्तर विज्ञान एवं जीवाष्टिमकी।
- इकाई—05 (1) स्पिटी क्षेत्रों के पुराजीव समूहों का भौगोलिक वितरण, संस्तर विज्ञान एवं आर्थिक महत्व।
 - (2) त्रिचनापल्ली क्षेत्र के क्रिटेशियस शैलों का संस्तर विज्ञान, जीवाश्म एवं आर्थिकी।
 - (3) कच्छ क्षेत्र के जुरासिक शैलों का संस्तर विज्ञान, जीवाश्म एवं आर्थिकी।
 - (4) असम के तृतीयक महायुग समूह का भौगोलिक वितरण संस्तर विज्ञान एवं आर्थिकी।
 - (5) शिवालिक समूह का संस्तर विज्ञान, भौगोलिक वितरण एवं कशेरूकीय जीवाश्मीय तत्व।

प्रायोगिक कार्यः

- (1) सेद्धातिक पाठ्यक्रम के अन्तर्गत उल्लेखित जीवाश्मों की आकारिकी का अध्ययन।
- (2) प्रमुख पादप जीवाश्मों का अध्ययन।
- (3) भारत के रेखा मानचित्र में विभिन्न संस्तर विज्ञानी इकाईयों को दर्शाना।
- (4) भारत के प्रमुख भूआकृतिक एवं शैल विर्वतनिक इकाईयों को रेखा मानचित्र में प्रदर्शित करना।

Suggested Readings

- (1) जीवाश्म विज्ञान के सिद्धांत— डॉ.अंबिका प्रसाद अग्रवाल
- (2) जीवाश्म विज्ञान— डॉ. आर.पी. मिश्रा
- (3) अकशेरूकी एवं कशेरूकीय जीवाश्म विज्ञान— डॉ. दीपक राज तिवारी
- (4) भारत वर्ष का भूविज्ञान— डॉ.अंबिका प्रसाद अग्रवाल
- (5) प्रायोगिक भू विज्ञान भाग-3- डॉ. गुप्ता, पुनवटकर, रघुवंशी
- (6) Invertebrate Palaeontology- H. Woods.
- (7) Introduction to Palaentology- A.N. Davis.

- (8) An Introduction to Invertebrate Palaeontology- P.G. Jain & M.S. Anantha Raman
- (9) Historical Geology of India- Ravidra Kumar
- (10) Geology of India- R.Vidhyanathan & M.Ramkrishne (GSI Publication)
- (11) Geology of India & Burma- M.S. Krishnan.

Class- B.Sc-III

Paper –I

(Palaeontology & Stratigraphy)

Unit-1	(1)	Palaeontology: Fossils- definition, Essentials for fossilization mode of
		fossilization.
	(2)	Uses of fossils; Index fossils & their significance.
	(3)	Application of palaeontology in the study of stratigraphy. Palaeoecology
		And Palaeo-geography.
	(4)	Micro palaeontology & their significance.
	(5)	Study of plant fossils & their significance.
Unit-2	(1)	Morphology & Geologic distribution of foraminifera & Anthozoa fossils.
	(2)	Morphology & Geological distribution of Gastropoda and lamellibranchia fossils.
	(3)	Morphology & Geological distribution or Cephalopoda.
	(4)	Morphology & Geological distribution or Echinoidae & Brachiopoda fossils.
	(5)	Morphology & Geological distribution of Triobite and Graptolite fossils.
Unit-3	(1)	Principles of stratigraphy: Geological time scale.
	(2)	Basic concept of lithostratigraphic, chronostratigraphic & Biostratigraphic
	(2)	Units.
	(3)	Structural & Physical Subdivision of Indian subcontinents.
	(4)	Distribution, classification & Economic importance or Archaeozoic rocks of
	(5)	India (Dharwar)
	(5)	Distribution, Stratigraphy & Economic Importance of Bastar & Raoghat group
		of rocks (Chhattisgarh)
Unit-4	(1)	Distribution, stratigraphy & Economic importance of Vindhya & Chhattisgarh
		group of rocks.
	(2)	Stratigraphy, Palaeoclimate, Geographical distribution & economic aspects of
		Gondwana rocks.

Stratigraphy, distribution & age of Deccan Traps.

(3)

- (4) Stratigraphy, distribution & fossil contents of Bagh & Lameta Bed.
- (5) Distribution, Stratigraphy & Palaeontology of salt Range group of rocks.

Unit-5

- (1) Distribution, Stratigraphy & Economics of Palaeozoic rocks of Spiti Valley.
- (2) Stratigraphy, Distribution, Fossil content of Cretaceous rocks of Trichinapalli.
- (3) Stratigraphy, distribution, Fossil content & Economics of Jurassic rocks of Kutch-Region.
- (4) Distribution, Stratigraphy, economic importance of Tertiary rocks of Assam-Region.
- (5) Distribution, Stratigraphy & Palaeontological importance of Siwalik group of rocks.

Practicals:-

- (1) Study of Morphology of Fossils belonging to various phyla.
- (2) Study of Important plant fossils.
- (3) Representation of Litho-units & Stratigraphic Units in out line map of India.
- (4) Sketching of physiographic and tectonic divisions of India.
- (5) Geological excursion for seven days.

कक्षा / Class- B.Sc-III

Paper -II

भूसंसाधन एवं व्यावहारिक भूविज्ञान

(Earth Resources & Applied Geology)

- इकाई—01 (1) आर्थिक भूविज्ञान परिचय एवं परिप्रेक्ष्य : वैश्विक खनिज निचय एवं संसाधन, दिक्काल में खनिज निक्षेपों का वितरण।
 - (2) खनिज निक्षेपों का वर्गीकरण। भूवैज्ञानिक तापमापी।
 - (3) अयस्क निर्माण की मैग्मीय सांद्रण विधि। उष्णजलीय प्रक्रियायें।
 - (4) अपक्षय उत्पाद एवं अवशिष्ट निक्षेप। आक्सीकरण एवं सल्फाइड समृद्धि प्रक्रम।
 - (5) अयस्क निर्माण की अवसादी प्रक्रिया। बलकृत सांद्रण।
- इकाई—02 भारत के संदर्भ में निम्नलिखित धात्विक / अधात्विक खनिज निक्षेपों की प्राप्ति अवस्था, खनिजकीय विशेषता, भूवैज्ञानिक एवं भौगोलिक वितरण एवं आर्थिक उपयोगों का वितरण।
 - (1) लौह, मैगनीज, क्रोमियम।
 - (2) ताम्र, सीसा, जस्ता।
 - (3) सोना, अल्युमिनियम।
 - (4) तापसह एवं उर्वरकखनिज।
 - (5) सीमेंट एवं केमिकल उद्योग में प्रयुक्त खनिज।
- इकाई-03 (1) कोयला निक्षेपों की उत्पत्ति, परिभाषा एवं संस्तर विज्ञान।
 - (2) कोल शैलिकी के मूलभूततथ्य। पीट, लिग्नाईट, बिटूमिनस, एंथ्रासाइट कोल, भारतीय कोल निक्षेपः विशेष संदर्भ में छत्तीसगढ।
 - (3) प्राकृतिक हाइड्रोकार्बन की उत्पत्ति, स्थानांतरण एवं संचयन। आयल ट्रेप के प्रकारः संरचनात्मक, संस्तर विज्ञानी एवं मिश्रित। भारत के तटीय एवं अपतटीय पेट्रोलियम निक्षेप।
 - (4) रेडियोधर्मी खनिजः खनिजविज्ञान, भूरसायन, पूर्वेक्षण तकनिकी, भारत में भौगोलिक एवं भूवैज्ञानिक वितरण।
 - (5) खनिज आर्थिकी के सिद्धान्त, राष्ट्रीय खनिजनीति।

- इकाई-04 (1) भूअभियांत्रिकी विज्ञान एवं उसका महत्व। शैलों के अभियांत्रिकी गुण।
 - (2) वृहद् बांध एवं सुरंग निर्माण के लिये भूवैज्ञानिक परिस्थितियों का अध्ययन।
 - (3) हवाई छायाचित्रों एवं उपग्रह इमेजियरी का प्रारंभिक अध्ययन। शहरी विकास में सुदूर संवेदन तकनीकी का अनुप्रयोग।
 - (4) जलचक्र। भूमिगत जल की प्राप्ति अवस्था। भूजल की गुणवत्ता।
 - (5) शैलों के भूजलीय गुण। जलभृत संस्तरों का वर्गीकरण। भारत का भूजल प्रदेश।

इकाई-05 (1) खनिज अंवेषण का परिचय। खनिज अन्वेषण की सतही एवं अधोसतही विधियाँ।

- (2) आर्थिक खनिजों के लिये पूर्वेक्षण विधियाँः ड्रीलिंग, प्रतिचयन एवं आमापन।
- (3) भूभौतिकीय पूर्वेक्षणतकनीकः गुरूत्वीय, विद्युतीय एवं चुम्बकीय विधियाँ।
- (4) हवाई पूर्वेक्षण विधि एवं भूकम्पीय विधियाँ।
- (5) खनिज स्त्रोंतों के अत्याधिक दोहन के पर्यावरणीय प्रभाव।

प्रयोगिक कार्यः

- (1) सैद्धान्तिक पाठ्यक्रम में दिये प्रमुख धात्विक / अधात्विक खनिजों का भौतिक / प्रकाशीय गुणों के आधार पर अध्ययन।
- (2) भारत के रेखा मानचित्र में प्रमुख धात्विक / अधात्विक खनिजों का वितरण दर्शाना।
- (3) कोयला एवं उसके विभिन्न प्रकारों के नमूनों का स्थूलदर्शी अध्ययन।
- (4) खिनज निष्कर्षण से संबंधित प्रायोगिक अभ्यास कार्यः निक्षेप आकलन, टनेज फेक्टर आकलन, ड्रीलिंग आदि से अभ्यास।
- (5) स्टिरियोस्कोप के द्वारा ऐरियल छायाचित्र का अध्ययन एवं विवेचना।
- (6) उपग्रह इमेजियरी का अध्ययन एवं विवेचना।
- (7) शैलों के भौमजलीय गुणों का अध्ययन, भौमजलीय मानचित्रों का बनाना एवं अध्ययन
- (8) दस दिवसीय भूवैज्ञानिक क्षेत्रीय अध्ययन

Suggested Readings:

- (1) आर्थिक भूविज्ञान- कृष्ण गोपाल व्यास
- (2) आर्थिक एवं व्यावहारिक भूविज्ञान— आर.पी. मांजरेकर

- (3) भौमजल विज्ञान- एल.के. रिछारिया
- (4) प्रारंभिक खनिकी— बी.के. सिंह
- (5) प्रायोगिक भूविज्ञान भाग-3- गुप्ता, पुनवटकर एवं रघुवंशी
- (6) Economic mineral deposits of India- Umeshwar Prasad.
- (7) Economic mineral deposits- A.Bateman
- (8) Ore-deposit of India- Gokhale & Rao
- (9) India's Mineral Resource- S. Krishnaswami
- (10) Principle of Engineering Geology & Geotechniques- Krynine & Judd.
- (11) Groundwater Hydrology- D.K. Todd
- (12) Courses in mining Geology- R.N.P. Arogyaswami
- (13) Principle & Application of photogeology- S.N. Pandey.
- (14) Ground water- Assessment, Development & Management- K.R. Karanth
- (15) Geophysical methods in Geology- P.V. Sharma.
- (16) Environmental Geology- K.S. Valdiya (1987)

Class- B.Sc-III

Paper –II

(Earth Resources & Applied Geology)

- Unit-1 (i) Economic Geology & its perspectives; Global mineral deposit & resource.

 Distribution of mineral deposits in time & space.
 - (ii) Classification of mineral deposits. Geological thermometers.
 - (iii) Magmatic & Hydrothermal processes of mineral formation.
 - (iv) Weathering : product & Residual deposit. Oxidation & sulphide supergene Enrichment processes.
 - (ii) Sedimentary processes of mineral formation. Placer deposits.
- Unit-2 Geological, Geographical distribution, mode of occurrence, mineralogy & economic importance of following metallic & nonmetallic deposits of India.
 - (i) Iron, Manganes, Chromium
 - (ii) Copper, Lead, Zinc
 - (iii) Gold, Aluminium
 - (iv) Refractory and Fertilizer minerals
 - (v) Minerals used in cement & chemical industries.
- Unit-3 (i) Coal deposit: Origin, Definition & stratigraphy
 - (ii) Fundamentals of coal petrography. Peat, Lignite, Bituminous & Anthracite Coal deposits of Chhattisgarh.
 - (iii) Origin of Natural-hydrocarbon, migration & accumulation. Types of oil traps; Structural, stratigraphic and composite. Offshore & onshore oil deposits of India.
 - (iv) Radioactive mineral: Mineralogy, Geochemistry, Prospecting techniques, Geological & Geographical distribution of atomic-mineral.
 - (vi) Principles of mineral economics. National mineral policy.
- Unit-4 (i) Engineering geology & its importance, Engineering properties of rocks
 - (ii) Geological conditions for establishing of large Dam and Tunnels.
 - (iii) Elementary study of Aerial photographs & satellite Imageries. Application of

- remote sensing in town-planning.
- (iv) Hydrologic cycle. Mode of occurrence of ground water, Quality of ground water.
- (v) Hydrologic properties of rocks. Classification of Aquifers. Ground water provinces of India.

Unit-5 (i) Introduction to mineral exploration, Surface & subsurface methods of mineral Exploration.

- (ii) Prospection methods; Drilling, Sampling & Assaying.
- (iii) Geophysical prospecting techniques: Gravity, Electrical & Magnetic methods.
- (iv) Aerial and seismic prospecting methods.
- (v) Environmental impacts of over exploitation of mineral resources.

Practical-

- (1) Study of important metallic/nonmetallic minerals on the basis of physical & optical properties.
- (2) Distribution of main metallic/nonmetallic deposits within outline map of India.
- (3) Magascopic studies of coal & its varieties.
- (4) Exercises related with mineral exploration; Reserve calculation, Tonnage factor calculation, Exercises related with drilling.
- (5) Study of Aerial photographs with the help of stereoscopes.
- (6) Study of satellite imageries.
- (7) Study of hydrologic properties of rocks, Preparation of hydrological maps.
- (8) Geological excursion for ten days.

B. Sc. (I.T.) TTT Year

INFORMATION TECHNOLOGIES

PAPER - I

(Paper Code-0928)

AMPLIFIERS AND OSCILLATORS

- UNIT-I POWER AMPLIFIER : Classification of power amplifiers, requirement of power amplifiers, single ended class A power amplifier, and its efficiency, transformer coupled power amplifier, power dissipation curve, harmonic dissipation curve, harmonic distortion in pushpull power amplifier, power and efficiency calculation for pushpull for pushpull power amplifier, Distortion in pushpull power amplifier, Advantages of pushpull power amplifier.
- UNIT-II FEEDBACK AMPLIFIERS AND OSCILLATORS : Feedback in amplifiers, types of feedback positive, and negative feedback. Derivation of input and output impedance in voltage and current series feedback. Advantages of negative feedback. Positive feedback. Berkhauson criteria for sustained oscillator. RF oscillators-Hartley oscillatot, Colpetts oscillators (Qualitative study) relaxation osillators, Multivibrators-Astable, Monostable.
- UNIT-III OPERATIONAL AMPLIFIER AND POWER CONTROL DEVICES : Differential amplifier, operational amplifier, Characteristics of an ideal OPAMP, definition of input bias current input offset current, current driff, impout offset, common mode rejection ratio, slew rate, universal biasing technique, Application of OP-Amp, as inverting, noninverting amplifiers, differentiation, Integration, scal charger and voltage follower, Silicon controlled rectifier (SCR), Diac, Traic and UUT (Only qualitative study).
- UNIT-IV THE INTEL 8080/8085 MICROPROCESSOR : Introcution, the 8085 pin diagram and functions, The 8085 architecture, addressing modes, the 8080/8085 instruction set, the 8080/8085 data transfer instructions, the 8080/8085 arithmetic instructions, the 8080/8085 logical instructions the 8080/8085 stack, I/O and machine controlled instructions.
- UNIT-V PROGRAMMING THE MICROPROCESSOR : Machine and assembling languages simplified instruction set, Instruction set, arithmetic poeration, Instructions set logical operations, instruction set data transfer operations, instruction set branch operations, instructuion set-subroutine all and return operations, instruction set miscellaneous operations, writing a program, addressing modes, program branching, program looping using subroutines.

Programming the 8080/8085 microprocessor : Introduction straight-line programs looping programs, mathematical programs.

PAPER - II

(Paper Code-0929)

FUNDAMENTAL DATA STRUCTURE

UNIT-I Introduction to Data STructure : The concept of data structure, Abstract data structure, Analysis of Algorithm, The concept of list.

B.St.-111

In Source (c. K. Gavel) () In Jorge from the print that the print the print

Stacks and Queues: Introduction to stack & primitive operation on stack, Stack as an abstract data type, Multiple Stack, Stacks application : infix, post fix, and Recursion, Introduction to queues, Primitive Operations on the Queues, Queue as an abstract data type, Circular Queue, Dequeue, Priority Queue.

- UNIT-II Linked List: Introduction to the linked list of stacks, The linked list of queues, Header nodes, Doubly linked list, Circular linked list, Stacks & Queues as a Circular linked list, Application of linked list.
- UNIT-III Trees: Basic Terminology, Binary Trees, Tree Representations as Array & Linked list, Binary tree representation, Traversal of binary trees : In order, Preorder & post order. Application of Binary tree, Threaded binary tree, B-Tree & Height balanced tree, representation of B⁺ & B* trees, Binary tree representation of trees, Counting binary trees, 2-3 Trees algorithm or manipulating 2-3 Trees.
- UNIT-IV Searching & Sorting: Sequential Searching, Binary search, Insertion sort, Selection sort, Quick sort, Bubble sort, Heap sort, Comparison of sorting methods.
- UNIT-V Tables & Graphs: Hash Table, Collision resolution Techniques, Introduction to graphs, Definition, Terminology, Directed, Undirected & Weighted graph, Representation of graphs. Graph Traversal Depth first & Breadth first search, Spanning Trees, minimum spanning Tree, The basic, Greedy Strategy for computing Algorithm of Kruskal and prims.

TEXT & REFERENCE BOOK :

Fundamentals of Data structure : By S. Sawhney & Horowith

Data Structure : By Trembley & Sorrenson.

Data Structure Using Pascal : By Tannenbaum & Alugenstein

Data Structure : By lipschuists (Schaume's Outline Series Mograw Hill Publication) Fundamentals of Computer Algorithm : By Ellis Horowitz and Sartaj Sawhney.

PRACTICAL WORK

- The sufficient practical work should be done for understanding the date structure with
- The sufficient practical work must be performed on stacks queues linked list, trees etc.
- All practical works should prepared in form of print outs and volunted while practical examination.

B.Sc. - III

Any 1/6/2018 (Dr. A.K. Dwivedi) (Cr. K. Gerver) (Dr. J. Dryn later)

MICROBIOLOGY

BSc-3rd

Paper- I: Medical Microbiology and Immunology

UNIT-1: AIR BORNE DISEASES

Air borne diseases: Types- Tuberculosis, Pertussis, Diphtheria, Influenza, Small & Chicken pox, Mumps, Measles. Symptoms, treatment and prevention.

UNIT-2: WATER BORNE DISEASES

Concept and cause of water borne diseases; Types, Hepatitis, Dysentery, Diarrhea, Cholera, typhoid. Symptoms, treatment and prevention.

UNIT-3: CLINICAL DISEASE AND DIAGNOSIS

Clinical diseases: Diabetes, Asthma, multiple sclerosis, rheumatoid arthritis, cancer. Symptoms, Treatment and prevention.

UNIT-4: BASIC CONCEPT OF IMMUNITY

Immune system: Structure and function of the cells, tissues and organs of immune system. Types of immunity- humoral and cellmediated, innate, acquired immunity. Antigen- Antibody: types, properties. Hapten, adjuvants, Immuno-globulins: Structure types, Properties and their function - Theory of antibody production.

UNIT-5: IMMUNO DISEASE DIAGNOSIS

Methods based on Ag-Ab interaction- precipitation, agglutination, ELISA, RIA, Immuno-electrophoresis, PCR based diagnosis method for infectious diseases.

Text Books Recommended:

- 1. Immunology: Kuby.
- 2. General Microbiology by Power and Daganiwala.
- 3. Zinssers Microbiology by K. J Wolfgang, McGraw-Hill Company.
- 4. Medical Microbiology; N. C. Dey and T.K. Dey, Allied agency, Calcutta.
- 5. Bacteriological Techniques by FJ Baker.
- 6. A Textbook of Microbiology; Dubey & Maheshwari; S. chand & Sons.
- 7. Scott's Diagnostic Microbiology by EJ Baron.

DSVak Raledhar Mitmirals

Paper- II: Environmental, industrial and Agricultural Microbiology

UNIT-1: AIR MICROBIOLOGY

Basics of Aerobiology, Microbes in atmosphere, source of microorganism in air, droplet nuclei, infectious dust, and bio-aerosol. Factors affecting microbial survival in the air. Sampling, collection and Isolation of microbes from air.

UNIT-2: WATER MICROBIOLOGY

Basic concept, water zonation, eutrophication, microbial community in natural water. Determining the quality of waterbacteriological evidence for fecal pollution, indicator of fecal pollution. Water purification methods. Disinfection of potable water supply.

UNIT-3: SOIL MICROBIOLOGY.

Soil as an environmental culture medium, microbes of soil. Brief account of microbial interactions-symbiosis, mutualism, commensalism, competition, predation, parasitism. Microbiological examination of soil. Rhizosphere- concept and role of microbes, rhizosphere and non rhizosphere micro-flora. Mycorrhiza.

UNIT-4: INDUSTRIAL MICROBIOLOGY.

Introduction and brief history and scope, important microbes in various industries. Fermentation- definition, types-Aerobic and anaerobic, Batch and SSF. Important products bread, cheese, vinegar, fermented dairy products and oriented fermented food involving microbes. Microbial cells as food. SCP -mushroom cultivation, production of alcohol and fermented beverages, beer and Wine

UNIT-5: AGRICULTURAL MICROBIOLOGY

History of Agricultural Microbiology; Microbes and their importance in maintenance of soil, Biogeochemical cycles, role of microbes in maintaining the fertility of soil. Bio fertilizers -Bacterial, azotobacter and vermiform compost. Soil microorganism -association with vascular plants- phyllosphere, Rhizobium, Rhizoplane associative nitrogen fixation. Bio-fertilizers - Cyanobacterial and Azolla

Text Books Recommended:

- 1. Hugo, W.B., Russell, A.D, pharmaceutical Microbiology 4th edition. Blackwell scientific publications / Oxford.
- 2. Russell and Ayliffe, G. A. J. (1982) Principles and practice of Disinfection, preservation and sterilization Oxford:
- 3. Gregory P.H. Microbiology of the atmosphere.2nd edition. Leonard Hill.
- 4. Food Microbiology by WC Frazier and D Westhoff.
- 5. Agricultural Microbiology by Bhagyaraj and Rangaswamy.
- 6. Bioremediation by KH Baker and DS Herson

Strong Marcell 18

DSVan Kaledhar Mimirals

PRACTICAL

M. M. 50

Isolation of bacteria from air and soil (crop fields)

Isolation of fungi from air and soil

Relationship between OD and CFU measurements.

Measurement of fungal growth by dry weight and wet weight

Study of rhizospheric and phyllospheric microbes from economically important plants.

Biodegradation study of some organic molecules

Microbial assessment of potable water.

Determination of BOD, COD and dissolved oxygen.

Determination of blood group by slide agglutination test./TLC/DLC

Determination of heamoglobin.

Determination of quality of milk by MBRT

Isolation of Rhizobium from root nodules.

Scheme of practical examination

Time 4 hour	MM- 50
1. Exercise on immunological test	10
2. Exercise on water analysis	10
3. Exercise on isolation and characterization of micro organism	05
4. Spotting (1 to 5)	10
5. Viva voce	05
6. Sessional	10
	Total- 50

allard

Phonole All

DSVak kaladhar Africal

B.Sc. Part-III Paper-I

RELATIVITY, QUANTUM MECHANICS, ATOMIC MOLECULAR AND NUCLEAR PHYSICS

- **Unit-1** Reference systems, inertial frames, Galilean invariance propagation of light, Michelson-Morley experiment, search for ether. Postulates for the special theory of relativity, Lorentz transformations, length contraction, time dilation, velocity addition, variation of mass with velocity, mass-energy equivalence, particle with zero rest mass.
- Unit-2 Origin of the quantum theory: Failure of classical physics to explain the phenomena such as black-body spectrum, photoelectric effect, Compton effect, Wave-particle duality, uncertainty principle, de Broglie's hypothesis for matter waves, the concept of Phase and group velocities, experimental demonstration of mater waves. Davisson and Germer's experiment. Consequence of de Broglie's concepts, Bohr's complementary Principle, Bohr's correspondence principle, Bohr's atomic model, energies of a particle in a box, wave packets. Consequence of the uncertainty relation, gamma ray microscope, diffraction at a slit.
- Unit-3 Quantum Mechanics: Schrodinger's equation, Statistical interpretation of wave function, Orthogonality and normalization of wave function, Probability current density, Postulatory basis of quantum mechanics, operators, expectation values, Ehrenfest's theorem, transition probabilities, applications to particle in a one and three dimensional boxes, harmonic oscillator in one dimension, reflection at a step potential, transmission across a potential barrier.
- **Unit-4** Spectra of hydrogen, deuteron and alkali atoms spectral terms, doublet fine structure, screening constants for alkali spectra for s, p, d and f states, selection rules. Discrete set of electronic energies of moleculers, quantisation of vibrational and rotational energies, determination of inter-nuclear distance, pure rotational and rotation vibration spectra. Dissociation limit for the ground and other electronic states, transition rules for pure vibration and electronic vibration spectra. Raman effect, Stokes and anti-Stokes lines, complimentary character of Raman and infrared spectra, experimental arrangements for Raman spectroscopy.

11 6 2018

100118

Unit-5 Structure of nuclei:- Basic Properties of Nuclei: (1) Mass, (2) Radii, (3) Charge, (4) Angular Momentum, (5) Spin, (5) Magnetic Moment (μ), (6) Stability and (7) Binding Energy, Nuclear Models:- Liquid Drop Model, Mass formula, Shell Model, Types of Nuclear reactions, laws of conservation, Q-value of reactions, Interaction of Energetic particles with matter, Ionization chamber, GM Counter, Cloud Chambers, Fundamental Interactions, Classification of Elementary Particles, Particles and Antiparticles, Baryons, Hyperons, Leptons, and Mesons, Elementary Particle Quantum Numbers: Baryon Number, Lepton Number, Strangeness, Electric Charge, Hypercharge and Isospin, introductory idea of discovery of Higg's Boson.

TEXT AND REFERENCE BOOKS:

- 1. H.S. Mani and G.K. Metha: "Introduction to Modern Physics"" (Affiliated East-West Press, 1989).
- 2. A Beiser, "Prospective of Modern Physics".
- 3. H.E. White, Introduction to Atomic Physic".
- 4. Barrow, "Introduction to Molecular Physics".
- 5. R.P. Feynman, R.B. Leighton and M Sands, "The Feynman Lectures on Physics", Vol.III (B.I. Publications, Bombay, Delhi, Calcutta, Madras).
- 6. T.A. Littlefield and N Thorley, "Atomic and Nuclear Physics" (Engineering Language Book Society)
- 7. H.A. Enge, "Introduction to Nuclear Physics", (Addision-Wesly)
- 8. Eisenberg and Resnick, "Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles" (John Wiley)
- 9. D.P. Khandelwal, "Optics and Atomic Physics", (Himalaya Publishing House, Bombay, 1988).
- 10. Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi, 1984.
- 11. Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).
- 12. Theoretical Nuclear Physics, J.M. Blatt & V.F.Weisskopf (Dover Pub.Inc., 1991).

Paper-II

SOLID STATE PHYSICS, SOLID STATE DEVICES AND ELECTRONICS

- Unit-1 Amorphous and crystalline solids, Elements of symmetry, seven crystal system, Cubic lattices, Crystal planes, Miller indices, Laue's equation for X-ray diffraction, Bragg's Law, Bonding in solids, classification. Cohesive energy of solid, Madelung constant, evaluation of Parameters, Specific heat of solids, classical theory (Dulong-Petit's law), Einstein and Debye theories, Vibrational modes of one dimensional monoatomic lattice, Dispersion relation, Brillouin Zone.
- Unit-2 Free electron model of a metal, Solution of one dimensional Schrödinger equation in a constant potential, Density of states, Fermi Energy, Energy bands in a solid (Kronig-Penny model without mathematical details), Difference between Metals, Insulator and Semiconductors, Hall effect, Dia, Para and Ferromagnetism, Langevin's theory of dia and para-magnetism, Curie- Weiss's Law, Qualitative description of Ferromagnetism (Magnetic domains), B-H curve and Hysteresis loss.
- Unit-3 Intrinsic and extrinsic semi conductors, Concept of Fermi level, Generation and recombination of electron hole pairs in semiconductors, Mobility of electrons and holes, drift and diffusion currents, p-n junction diode, depletion width and potential barrier, junction capacitance, I-V characteristics, Tunnel diode, Zener diode, Light emitting diode, solar cell, Bipolar transistors, pnp and npn transistors, characteristics of transistors, different configurations, current amplification factor, FET and MOSFET Characteristics.
- Unit-4 Half and full wave rectifier, rectifier efficiency ripple factor, Bridge rectifier, Filters, Inductor filter, L and π section filters, Zener diode, regulated power supply using zener diode, Applications of transistors, Bipolar Transistor as amplifier, h-parameter, h-parameter equivalent circuit, Transistor as power amplifier, Transistor as oscillator, principle of an oscillator and Bark Hausen's condition, requirements of an oscillator, Wein-Bridge oscillator and Hartley oscillator.
- Unit-5 Digital Circuits: Difference between Analog and Digital Circuits, Binary Numbers, Decimal to Binary and Binary to Decimal Conversion, AND, OR and NOT Gates (Realization using Diodes and Transistor), NAND and NOR Gates as Universal Gates, XOR and XNOR Gate, De Morgan's Theorems, Boolean Laws, Simplification of Logic Circuit using Boolean Algebra, Digital to Analog Converter, Analog to Digital Converter.

TEXT AND REFERENCE BOOKS:

- 1. Introduction to solid state physics: C. Kittel.
- 2. Solid State Physics: A.J. Dekkar.
- 3. Electronic Circuits: Mottershead.
- 4. Electronic Circuits: Millman and Halkias.
- 5. Semiconductor Devices: S.M. Sze.
- 6. Electronic devices: T.L. Floyd.
- 7. Device and Circuits: J. Millman and C. Halkias.
- 8. Electronic Fundamental and Applications: D. Chatopadhyay and P.C. Rakshit.
- 9. Electricity and Magnetism: K.K. Tiwari.

PRACTICALS

Minimum 16 (Eight from each group)

Experiments out of the following or similar experiments of equal standard

- 1. Determination of Planck's constant.
- 2. Determination of e/m by using Thomson tube.
- 3. Determination of e by Millikan's methods.
- 4. Study of spectra of hydrogen and deuterium (Rydberg constant and ratio of masses of electron proton).
- 5. Absorption spectrum of iodine vapour.
- 6. Study of alkali or alkaline earth spectra using a concave grating.
- 7. Study of Zeeman effect for determination of a Lande g-factor.
- 8. Analysis of a given band spectrum.
- 9. Study of Raman spectrum using laser as an excitation source.
- 10. Study of absorption of alpha and beta rays.
- 11. Study of statistics in radioactive measurement.
- 12. Coniometric study of crystal faces.
- 13. Determination of dielectric constant.
- 14. Hysteresis curve of transformer core.
- 15. Hall-probe method for measurement of magnetic field.
- 16. Specific resistance and energy gap of semiconductor.
- 17. Characteristics of transistor.
- 18. Characteristics of tunnel diode.
- 19. Study of voltage regulation system.
- 20. Study of regulated power supply.

- 21. Study of lissajous figures using CRO.
- 22. Study of VTVM.
- 23. Study of RC and TC coupled amplifiers.
- 24. Study of AF and RF oscillators.
- 25. Find roots of f(x) = 0 by using Newton-Raphson Method.
- 26. Find root of f(x) = 0 by using secant method.
- 27. Integration by Simpson rule.
- 28. To find the value of V at
- 29. String manipulations.
- 30. Towers of Hanoi (Non-recursive).
- 31. Finding first four perfect numbers.
- 32. Quadratic interpolation using Newton's forward-difference formula of degree two.

TEXT AND REFERENCE BOOKS:

- 1. B.G. Strechman, Solid state electronics devices II edition (Prentice-Hall of India New Delhi 1986)
- 2. W.D. Stanley, Electronics devices, circuits and applications (Prentice-Hall new jersey, USA 1988).
- 3. S. Lipschutz and A Poe; Schaum's outline of theory and problems of programming with Fortran (Mc Graw-Hill Book Co. Singapore, 1986).

4. C Dixon, Numerical Analysis.

Zoology

B.Sc. Part III 2018-19

Paper-I

ECOLOGY, ENVIRONMENTAL BIOLOGY: TOXICOLOGY, MICROBIOLOGY AND MEDICAL ZOOLOGY

Unit: I (Ecology)

- Aims and scopes of ecology
- Major ecosystems of the world-Brief introduction
- Population- Characteristics and regulation of densities
- Communities and ecosystem
- Bio-geo chemical cycles
- Air & water pollution
- Ecological succession

Unit: II (Environmental Biology)

- Laws of limiting factor
- Food chain in fresh water ecosystem
- Energy flow in ecosystem- Trophic levels
- Conservation of natural resources
- Environmental impact assessment

Unit: III (Toxicology)

- Definition and classification of Toxicants
- Basic Concept of toxicology
- Principal of systematic toxicology
- Heavy metal Toxicity (Arsenic, Murcury, Lead, Cadmium)
- Animal poisons- snake venom, scorpion & bee poisoning
- Food poisoning

Unit: IV (Microbiology)

- General and applied microbiology
- Microbiology of domestic water and sewage
- Microbiology of milk & milk products
- Industrial microbiology: fermentation process, production of penicillin, alcoholic breverages, bioleaching.

Unit:V (Medical Zoology)

- Brief introduction to pathogenic microorganisms, Ricketssia, Spirochaetes, AIDS and Typhoid
- Brief account of life history & pathogenicity of the following pathogens with reference to man: prophylaxis & treatment
- Pathogenic protozoan's- Entamoeba, Trypanosome & Plasmodium
- Pathogenic helminthes- Schistosoma
- Nematode pathogenic parasites of man
- Vector insects

Zoology B.Sc. Part III 2018-19 Paper II

GENETICS, CELL PHYSIOLOGY, BIOCHEMISTRY, BIOTECHNOLOGY AND BIOTECHNIQUES

Unit: I (Genetics)

- Linkage & linkage maps, Sex Determination and Sex Linkage
- Gene interaction- Incomplete dominance & Codominance, Supplementary gene, Complementary gene, Epistasis Lethal gene, Pleiotropic gene and multiple alleles.
- Mutation: Gene and chromosomal mutation
- Human genetics: chromosomal alteration: Down, Edward, Patau, Turner and Klinefelter Syndrome Single gene disorders: Alkaptonuria, Phenylketonuria, Sickle cell anemia, albinism and colour blindness

Unit: II (Cell Physiology)

- General idea about pH & buffer
- Transport across membrane: Diffusion and Osmosis
- Active transport in mitochondria & endoplasmic reticulum
- Enzymes-classification and Action

Unit: III (Biochemistry)

- Amino acids & peptides- Basic structure & biological function
- Carbohydrates & its metabolism- Glycogenesis; Gluconeogenesis; Glycolysis; Glycogenolysis; Cosi-cycle
- Lipid metabolism- Oxidation of glycerol; Oxidation of fatty acids
- Protein Catabolism- Deamination, transamination, transmethylation

Unit: IV (Biotechnology)

- Application of Biotechnology
- Recombinant DNA & Gene cloning
- Cloned genes & other tools of biotechnology (Tissue culture, Hybridoma, Trasgenic Animals and Gene library)

Unit: V (Biotechniques)

- 1. Principles & techniques about the faollowing:
 - (i) pH meter
 - (ii) Colorimeter
 - (iii) Microscopy- Light microscopes: Compound, Phase contrast & Electron microscopes
 - (iv) Centrifuge
 - (v) Separation of biomolecules by chromatography & electrophoresis

B. Sc. Part III 2018-19 Zoology Practical

The practical work in general shall be based on syllabus prescribed in theory.

The candidates will be required to show knowledge of the following:

- Estimation of population density, percentage frequency, relative density.
- Analysis of producers and consumers in grassland.
- Detection of gram-negative and gram-positive bacteria.
- Blood group detection (A,B,AB,O)
- R. B. C. and W.B.C count
- Blood coagulation time
- Preparation of hematin crystals from blood of rat
- Observation of Drosophila, wild and mutant.
- Chromatography-Paper or gel.
- Colorimetric estimation of Protein.
- Mitosis in onion root tip.
- Biochemical detection of Carbohydrate, Protein and Lipid.
- Study of permanent slides of parasites, based on theory paper.
- Working principles of pH meter, colorimeter, centrifuge and microscope.

Scheme of marks distribution **Time: 3:30hrs** Hematological Experiment 08 Ecological Experiment: Grassland Ecosystem/ 06 Population Density/Frequency/relative density Bacterial staining 05 Biochemical experiment 06 Practical based on Instrumentation (Chromatography/ pH meter/microscope/centrifuge. 05 Spotting (5 spots) 10 Viva 05 8. Sessional 05

FORESTRY PAPER - I

MM: 50

UNIT - I

Forest Ecology

Basic ecological principles and concepts.

Abiotic and Biotic Components of forest ecosystem.

Fundamental Concepts Related to energy in Ecological system. Food chain, food web and Tropic structure.

Ecological Pyramids.

Biotic Community Concept.

UNIT-II

Wildlife Management

Wildlife Conservation and Management

National Parks and Sanctuaries.

Project Tiger

Vanishing Species.

UNIT-III

Wildlife Protection Act

General idea of wildlife protection act, 1972.

UNIT-IV

Forest Policies

Brief idea of Forest policies of 1984, 1952, 1988.

Need for new policy.

UNIT-V

Forest Law

Brief Knowledge of Indian Forest act, 1927

Forest Conservation act, 1980

FORESTRY PAPER – II

MM: 50

UNIT - I

Forest Soils

Definition and Function of Soil, Importance of Soil Soil Formation, Soil Properties and Soil pollution

UNIT-II

Forest Pathology

Definition, kinds of symptoms of diseases, methods of control, Root Diseases and their control, Heart Root, Nursery diseases, Common Diseases in Selected Forest Tiger.

UNIT-III

Forest Entomolgy

Classification of class insecta with distinguishing characters, Pests of Important Forest Trees and their control, Pests of Nurseries.

UNIT-IV

Forest Protection

Introduction, Factors affecting forest protection and kinds of forest protection measures, Protection of forest crop Injuries by-Man, Animals, Plants, Adverse climatic factors.

UNIT-V

Forest Engineering

10. Introduction of Ecology

Building Materials, Building Construction, Forest Roads, Forest Bridges

List of Reference books:

1.	Forest Entomology	- B.K. Bakshi.
2.	Ecology and Environ Soi	-Rastogi Publication
3.	Wildlife Management	-S.S.Negi/L.S. Khanna
4.	Indian forest act	- Manual
5.	Forest Laws and Policies	- Manual
6.	Soil Seine	-Deji
7.	Forest Patrol by	-Restom
8.	Forest Enquiring	-L.S. Khanna
9.	Reads Bridges	-L.S. Khanna

-E.P. Odum

FORESTRY PRACTICAL

MM: 50

List of Practicals

- 1. Ecology Quadrates for density abundance and frequency.
- 2. Study of components of forest ecosystem.
- 3. Visit to National Park or Wildlife Sentry.
- 4. Study of Soils.
- 5. Soil pH

TASAR TECHNOLOGY PAPER I TEXTILE DESIGN, FABRIC STRUCTURES & WEAVING

MM: 50

UNIT - I

- 1. Different types of winding method.
- 2. Loom: Definition of loom, types of loom, details about handlooms, parts of loom, simple Idea of motion of the loom.
- 3. Study of power loom and handloom wearing.
- 4. Preparation for tasar silk weaving, warp preparation, warping, beaming, drawing, denting, weft preparation,

UNIT – II

- 1. Textile Design: Preparation of design on natural, convention and obstruct forms.
- 2. Planning of design, placement, repeats, transferring designs, jacquard and patterns.
- 3. Design selection based on different forms of layout in colour for saree border.
- 4. Design development and its suitability.

UNIT - III

- 1. Traditional and tribal motifs of design.
- 2. Fabric Structure: Different types of fabrics and their uses, fabric defects and grading of silk fabrics.
- 3. Fabric: classification and weave notations, plain weave its vein and ornamentation, rib & twill weave and their derivatives, satin and their derivatives.
- 4. Study of coarse structure like whip cord and Bedford cord pique wett and quilting fabrics, wadded structure.

UNIT - IV

- 1. Tasar technology as a rural Industry, Employment potential. Comparison with other comparison with other cottage Industries.
- 2. Tasar technology progress through five year plans, targets and achievements, future projections.
- 3. Prospects and problems of tasar technology.
- 4. Tasar culture: Its association with forest tribes.

UNIT - V

- 1. Role of women in tasar technology: women participation in farm and rearing management, silk reeling, twisting etc.
- 2. Prospects of biotechnology to improve tasar silk production.
- 3. Quality control in tasar silk weaving and its necessity.
- 4. Tasar technology as a tool for rural development.

TASAR TECHNOLOGY PAPER – II

EXTENSION, ORGANIZATION, PLANNING AND MANAGEMENT

MM: 50

UNIT - I

- 1. Extension Education: Definition, meaning, origin and growth. Role of extension in rural development.
- 2. Tasar Technology extension organization: organization at various level development, research, training and policy at state and national levels.
- 3. Tasar technology service net work: B.S.F. seed area; grain ages, nurseries, C.R.C., TSCS. Cocoon markets, silk exchange and cocoon certification centre.

UNIT - II

- 1. Farmer Training programme: Departmental training programme / Demonstration, lectures, symposium, panel and forum as extension methods. Field day and field trips. Farmer fair.
- 2. Mass concept methods: T.V., Radio. Farm publications, film shows, merit and limitations.
- 3. The labour problems, problems of problems of personnel management in tasar Industries.

UNIT - III

- 1. Survey: object, availability of land for plantation in an areas in a district. Existence of tasar Industry in village tahsil and district.
- 2. Survey of weavers/reelers enclave excluding their socio-Economic status measures of drainage of traditional weavers/ reelers, step for its restoration.
- 3. Soil Types: water availability, annual rainfall, socio-Economic condition, agricultural crops, profitability, financing agencies, co-operative societies.
- 4. Project: infra structure availability, its role, future programme. Preparation of a project, use of survey report, economics, present condition.

UNIT-IV

- 1. Planning: Fundamental requirement for planning. Project formulation for establishment of small, medium and large scale tasar food plants forms.
- 2. Budgeting in planning.
- 3. Interstate tasar project programme, tribal development programme of govt. of India through tasar culture. Bank loan for tasar culture.
- 4. Government Intervention: Legislation, Implication, marketing Institutions, Marketing boards.

UNIT-V

- 1. Management: Definition, application and scope of farm management nature and characteristics of farm management. Farm management problems.
- 2. Marketing management: Tasar Industries marketing & organization of seed, cocoon, raw silk and silk fabric.
- 3. Marketing costs: Defects, regulated markets, traditional and non-traditional markets, co-operative marketing, stabilization of price. Price fixation.

BIOCHEMISTRY

PAPER - I

MOLECULAR BIOLOGY

UNIT-I BASIC CONCEPTS OF GENETIC INFORMATION

- a Nucleic acids as genetic information carriers, experimental evidence e.g. bacterial genetic transformation, Hershey Chase Experiment, TMV reconstitution resperiment.
- by Central dogma of molecular genetics current version, reverse transcription and retrovinuses.
- c. Primary structure of nucleic acids and their properties, silent features of eukaryotic, prokaryotic and viral genome; highly repetitive, moderately repretitive and unique DNA sequences.
- d Basic concepts about the secondary structures of nucleic acids, 5' 3' direction antiparallel strands, base composition, base equivalence, bae pairing and base stacking in DNA molecule. and buoyant density and their.

UNIT-II STRUCTURAL LAVELS OF NUCLEIC ACIDS AND SEQUENCING

- a Scondary and tertiary structure of DNA: Watson and Crick model, A.B. and Z types of DNA major and minor grooves, chirality of DNA, tertiary structure of DNA.
- b. Structure and properties of RNA; Classes of RNA secondary and tertiary structures.
- c. Nucleic acid hybridization: Cot value and satellite DNA.
- d Sequencing: Restriction and modification system; sequencing of DNA and RNA.

UNIT-III a DNA REPLICATION

DNA replication in prokaryotes - conservative, semi conservative and dispersive types, experimental evidence for semi conservative replication. DNA polymerases, other enzymes and protein factors involved in replication. Mechanism of replication. Inhibitors of DNA replication.

b. TRANSCRIPTION

Transcription in prokaryotes RNA polymerase, promoters, initiation, elongation and termination of RNA synthesis, inhibitors of transcription. Reverse transcriptase, post transcriptional processing of RNA in eukaryotes.

UNIT-IV TRANSLATION AND REGULATION OF GENE EXPRESSION

- a. Genetic code: Basic feature of genetic code, biological significance of degeneracy. Wobble hypothesis, gene within genes and overlapping genes.
- h Mechanism of translation: Ribosome tructure, A and P sites, charged tRNA, f-mat-tRNA initiator codon, Shine Dalgarno consensus sequence (AGGA), formation of 70S initiation complex, role of EF-Tu, EF-Ts, EF G and GTP, nonsense codons and release factors RF 1 and RF 2.
- c. Regulation of gene Expression in prokaryotes: Enzyme induction and repression,

B.Sc.-III (68)

operon concepts, Lac operon, Trp operon.

UNIT-V MUTATION AND REPAIR

- a Mutation: Molecular basis of mutation, types of mutation, e.g. transition, transversion frame shift, insertion, deletion, suppresser sensitive, germinal and somatic, backward and forward mutations, true reversion and suppression, dominant and recessive mutation, spontaneous and induced mutations = Ledergerg's replica plating experiment.
- h Mutagenecity testing: Correlation of mutagenecity and carcinogenicity: Ames testing, Random and site directed mutagenesis.
- c. DNA Rapair: UV repair system in E.Coli, Significance of thymine in DNA.

RECOMBINATION AND TECHNOLOGY

Restriction endanucleases, brief discussion of steps in DNA cloning. Application of recombinant DNA technology.

Books:

- 1. Biochemistry J David Rawn, Neil Patterson Publisher, North Carolina.
- 2 Molecular biology of the gene JD Watson, NH Hopkins, JW Robert, JP Stretz, AM Weiner, Freeman San Francisco.
- 3. Fundamental of biochemistry by D Voet and CW Pratt, John Wiley & Sons, NY.
- 4. Text book of biochemistry Thomas M Devin, John Weley & Sons, NY.

PAPER - II

NUTRITIONAL, CLINICAL & ENVIRONMENTAL BIOCHEMISTRY

M.M.-50

UNIT-I NUTRITIONAL BIOCHEMISTRY

Nutrition and dietary habits

- a Introduction and definition of foods and nutritioni. Factors determining food acceptance, physiological, energy, body building (growth and development).

 Regulation of body temperature. Physiology and nutrition of carbohydrates, fats, proteins and water. Vitamins A,D,E,K, Vit B-Complex and Vit C and minerals like Ca, Fe and Iodine and their biological functions. Basic food groups: energy giving foods, body building foods and protective foods.
- b Composition of balanced diet, recommended dietary allowances (RDA) for average indian, locally available foods, inexpensive quality foods and food stuff's rich in mor ethan one nutrients. Balanced vegetarian diet, emphasis on nutritional adequacy.

UNIT-II NUTRITATINE AND CALORIFIC VALUES OF FOODS

a Basic concepts of energy expenditure, units of energy, measurement of energy expenditure by direct or indirect calorimetry, calculation of non protein RQ with respect to carbohydrates and lipids. Determination of heat production of the diet. The basal metabolism and method of measuring basal metabolic rate (BMR),

B.Sc.-III (69)

- energy requirements during growth, pregnancy, lactation and various physiological activities. Calculation of energy expenditure of average man and women.
- b Specific dynamic action (SDA) of foods, naturitive value of various kinds of foods generally used by Indian population. Planning of dietary regimes for infants, during pregnancy and old age. Malnutrition, its implications and relationship with dietary habits and prevention of malnutrition pecially protein-calories malnutrition (Kwashiorkor and Marasmus) by improvements of diets. Human milk and its virtues, breast vs formulated milk feeding. Food preservation standards, food adulterations and precautions, government regulations on poreservation and quality of food.

UNIT-III CLINICAL BIOCHEMISTRY

1 Basic concepts of clinical biochemistry

- a Definition and scope of clinical biochemistry in diagnosis, a brief review of units and abbreviation used in expression concentration and standard solutions. Quality control. Manual vs automation in clinical laboratory.
- b Collection and preservation of biological fluids (blood, serum, plasma, urine and CSF) Chemical analysis of blood, urine and CSF. Normal values for important constitutes (in SI units) in blood (plasma / serum), CSF and urine, clearance tast for urea.

UNIT-IV 0 CLINICAL ENZYMOLOGY

- a Definition of functional and non-functional plasma enzymes. Isozymes and diagnostics Tests. Enzymes pattern in health and diseases with special mention of plasma lipase, amylase, cholinesterase, alkaline and acid phosphatase, SGOT, SGPT, LDH and CPK.
- b Functional tests of kidney, liver and gastric fluids.
- (i) Hypo and hyper-gylcemia, glycogen storage diseases, lipid mal-absorption and steatorrhea, sphingolipidosis, role of lipoproteins. Inborn errors of amino acid metabolism alkaptonuria, phenyl-ketonuria, albinism, gout and hyper-uricemia.

UNIT-V ENVIRONMENTAL BIOCHEMISTRY

- **Air pollution:** Particulate matter, compounds of carbon, sulphur, nitrogen and their interactions, methods of their estimation, their effect on atmosphere.
- (i) Water pollution: Types of water boides and their general characteristic, major pollutants in domestic, agricultural and industrial wastes, methods of their estimation, effects of pollutants on plants and animals, treatment of domestic and industrial wastes, solid-wastes and their treatment.

Books:

- 1. Modern nutrition in health and diseaser by Whol and Goodhart.
- 2. Human nutrition and Dietetics-S. Davidson and passmore-ELBS Zurich.
- 3. Tietz fundamental of clinical Chemistry by Cart A Burits & ER Ashwood Saunders WB Co.
- 4. Leacture Notes on Clinical Biochemistry-LG Whitby, AF Smith, GJ Beckett.

B.Sc.-III (70)

PRACTICAL FOR IIIrd YEAR

LABORATORY - III (BCH 305)

- 1. Estimation of DNA by diphenylamine method.
- 2. Effect of temperature on the viscosity of DNA using Ostwald's Viscometer.
- 3. Extraction of RNA and its estimation by Orcinol method.
- 4. Estimation of hemoglobin by measuring total iron in blood.
- 5. Estimation of calcium and phosphorus in serum & urine.
- 6. Estimation of creatine and creatinine in urine.
- 7. Estimation of immunoglobulins by precipitation with saturated ammonium sulphate.
- 8. Denaturation fo enzyme, studies on DNA.
- 9. a Separation of proteins by column chromatography.
 - b. Determination of proteins by dye binding assay.
- 10. Separation of proteins by SDS-polyacrylamide gel electrophoresis.

_ _ _ _ _ _

B.Sc.-III (71)